Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 430: 128351, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149487

RESUMEN

The development of high-efficient and cost-effective electrocatalysts is crucial to remove nitrate pollutant in wastewater. Herein, we design and prepare mesoporous Co-doped Cu2(OH)2CO3 malachite nanosheets as an electrocatalyst toward highly efficient nitrate reduction using a facile CO2 bubble-assisted coprecipitation synthesis. The electrocatalytic performance is subject to the Co/Cu ratio of this malachite. Remarkably, compared with the pristine monometal Cu or Co-based electrocatalyst, the optimal electrocatalyst, 0.3Co@Cu2(OH)2CO3, displays fast and highly efficient removal capacity of nitrate with an impressive high total nitrogen (TN) removal of 8628.99 mg N g-1CoCu (398.79 mg N gcat-1 h-1), N2 selectivity of 97.11% as well as negligible nitrite product at 100 mg L-1 NO3--N and 2000 mg L-1 Cl- neutral electrolyte. Above all, high total nitrogen removal efficiency (81.92%) and chemical oxygen demand (73.74%) in actual wastewater. Its excellent electrocatalytic performance is achieved by regulating the electronic structure and the adsorption/desorption of the intermediate. This study discovers a new type of electrode materials for nitrate removal in wastewater.

2.
Chemistry ; 27(28): 7731-7737, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33792092

RESUMEN

Transition-metal phosphates have been widely applied as promising candidates for electrochemical energy storage and conversion. In this study, we report a simple method to prepare a N, F co-doped mesoporous cobalt phosphate with rich-oxygen vacancies by in-situ pyrolysis of a Co-phosphate precursor with NH4 + cations and F- anions. Due to this heteroatom doping, it could achieve a current density of 10 mA/cm2 at lower overpotential of 276 mV and smaller Tafel slope of 57.11 mV dec-1 on glassy carbon. Moreover, it could keep 92 % of initial current density for 35 h, indicating it has an excellent stability and durability. Furthermore, the optimal material applied in supercapacitor displays specific capacitance of 206.3 F g-1 at 1 A ⋅ g-1 and maintains cycling stability with 80 % after 3000 cycles. The excellent electrochemical properties should be attributed to N, F co-doping into this Co-based phosphate, which effectively modulates its electronic structure. In addition, its amorphous structure provides more active sites; moreover, its mesoporous structure should be beneficial to mass transfer and electrolyte diffusion.

3.
ChemSusChem ; 13(10): 2564-2570, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32196953

RESUMEN

It remains a challenge to rational design of a new metal-organic framework (MOF) as highly efficient direct electrocatalysts for the oxygen evolution reaction (OER). Herein, we developed a simple and effective method to explore a new pillared-layered MOF with syringic acid as a promising OER electrocatalyst. The isostructural mono-, heterobimetallic MOF and N,S co-doped MOF by mixing thiourea were quickly synthesized in a high yield under solvothermal condition. Moreover, the optimized N,S co-doped MOF exhibits the lowest overpotential of 254 mV at 10 mA cm-2 on a glass carbon electrode and a small Tafel slope of 50 mV dec-1 , especially, this catalyst also possesses long-term electrochemical durability for at least 16 h. According to the characterization, the incorporation of N and S atoms into this heterobimetallic CoFe-based MOF could modify its pore structure, tune the electronic structure, accordingly, improve the mass and electron transportation, and facilitate the formation of active species, as a consequence, the improved activity of this new N,S co-doped MOF for OER should be mainly be ascribed to higher electrochemical activation toward the active species via in situ surface modification during the OER process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...