Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Int J Oral Sci ; 16(1): 51, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987554

RESUMEN

Traditional open head and neck surgery often leaves permanent scars, significantly affecting appearance. The emergence of surgical robots has introduced a new era for minimally invasive surgery. However, the complex anatomy of the head and neck region, particularly the oral and maxillofacial areas, combined with the high costs associated with established systems such as the da Vinci, has limited the widespread adoption of surgical robots in this field. Recently, surgical robotic platform in China has developed rapidly, exemplified by the promise shown by the KangDuo Surgical Robot (KD-SR). Although the KD-SR has achieved some results comparable to the da Vinci surgical robot in urology and colorectal surgery, its performance in complex head and neck regions remains untested. This study evaluated the feasibility, effectiveness, and safety of the newly developed KD-SR-01, comparing it with standard endoscopic systems in head and neck procedures on porcine models. We performed parotidectomy, submandibular gland resection, and neck dissection, collected baseline characteristics, perioperative data, and specifically assessed cognitive workload using the NASA-TLX. None of the robotic procedures were converted to endoscopic or open surgery. The results showed no significant difference in operation time between the two groups (P = 0.126), better intraoperative bleeding control (P = 0.001), and a significant reduction in cognitive workload (P < 0.001) in the robotic group. In conclusion, the KD-SR-01 is feasible, effective, and safe for head and neck surgery. Further investigation through well-designed clinical trials with long-term follow-up is necessary to establish the full potential of this emerging robotic platform.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Animales , Porcinos , Procedimientos Quirúrgicos Robotizados/instrumentación , Modelos Animales , Glándula Submandibular/cirugía , Estudios de Factibilidad , Disección del Cuello/instrumentación , Procedimientos Quirúrgicos Orales/instrumentación , Procedimientos Quirúrgicos Orales/métodos , Glándula Parótida/cirugía
2.
J Hepatol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996924

RESUMEN

BACKGROUND AND AIM: Treatment with immune checkpoint inhibitors (ICIs) for hepatocellular carcinoma (HCC) prior to liver transplantation (LT) has been reported; however, ICIs may elevate the risk of allograft rejection and impact other clinical outcomes. This study aims to summarize the impact of ICI use on post-LT outcomes. MATERIALS AND METHODS: In this individual patient data meta-analysis, we searched databases to identify HCC cases treated with ICIs before LT, detailing allograft rejection, HCC recurrence, and overall survival. We performed Cox regression analysis to identify risk factors for allograft rejection. RESULTS: Among 91 eligible patients, with a median (interquartile range [IQR]) follow-up of 690.0 (654.5) days, there were 24 (26.4%) allograft rejections, 9 (9.9%) HCC recurrences, and 9 (9.9%) deaths. Age (adjusted hazard ratio [aHR] per 10 years=0.72, 95% confidence interval [CI]=0.53, 0.99, P=0.044) and ICI washout time (aHR per 1 week=0.92, 95% CI=0.86, 0.99, P=0.022) were associated with allograft rejection. The median (IQR) washout period for patients with ≤20% probability of allograft rejection was 94 (196) days. Overall survival did not differ between cases with and without allograft rejection (log-rank test, p=0.2). Individuals with HCC recurrence had fewer median (IQR) ICI cycles than those without recurrence (4.0 [1.8]) vs. 8.0 [9.0]); p=0.025). The proportion of patients within Milan post-ICI was lower for those with recurrence vs. without (16.7% vs. 65.3%, p=0.032) CONCLUSION: Patients have acceptable post-LT outcomes after ICI therapy. Age and ICI washout length relate to the allograft rejection risk, and a 3-month washout may reduce it to that of patients without ICI exposure. Number of ICI cycles and tumor burden may affect recurrence risk. Large prospective studies are necessary to confirm these associations. IMPACT AND IMPLICATIONS: This systematic review and individual patient data meta-analysis of 91 patients with hepatocellular carcinoma and immune checkpoint inhibitors use prior to liver transplantation suggests acceptable overall post-transplant outcomes. Older age and longer immune checkpoint inhibitor washout period have a significant inverse association with the risk of allograft rejection. A 3-month washout may reduce it to that of patients without ICI exposure. Additionally, a higher number of immune checkpoint inhibitor cycles and tumor burden within Milan criteria at the completion of immunotherapy may predict a decreased risk of hepatocellular carcinoma recurrence, but this observation requires further validation in larger prospective studies. CODE FOR INTERNATIONAL PROSPECTIVE REGISTER OF SYSTEMATIC REVIEWS (PROSPERO): CRD42023494951.

3.
Talanta ; 278: 126550, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39013338

RESUMEN

In this study, a low field nuclear magnetic resonance (LF-NMR) homogeneous sensor was constructed for detection of Escherichia coli (E. coli) based on the copper metabolism of E. coli triggered click reaction. When live E. coli was present, a large amount of Cu2+ ions were transformed into Cu+ via copper metabolism, which then catalyzed a Cu+-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between two materials, azide group modified gadolinium oxide nanorods (Gd2O3-Az) and PA-GO@Fe3O4 i.e., graphene oxide (GO) loaded with large amounts of alkynyl (PA) groups and Fe3O4 nanoparticles simultaneously. After magnetic separation, unbound Gd2O3-Az was dissolved by added hydrochloric acid (HCl) to generate homogeneous Gd3+ solution, enabling homogeneous detection of E. coli. Triple signal amplification was achieved through the CuAAC reaction induced by E. coli copper metabolism, functional nanomaterials, and HCl assisted homogeneous detection. Under the optimal experimental conditions, the linear range and limit of detection (LOD) for E. coli were 10-1.0 × 107 CFU/mL and 3.5 CFU/mL, respectively, and the relative standard deviations (RSDs) were all less than 2.8 %. In addition, the sensor has satisfactory selectivity, stability and practical sample application capability, providing a new approach for the LF-NMR detection of food-borne pathogenic bacteria.

4.
Pharmacol Res ; : 107301, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009291

RESUMEN

Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: antioxidative stress effects, antiapoptotic effects, antiinflammatory effects, antifibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124703, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38936206

RESUMEN

Unsafe food additives pose a significant threat to global health, especially in developing countries. Many existing methods rely on clean laboratories, complicated optics equipment, trained personnel and lengthy detection time, which are not suitable for onsite food safety inspections in emergency situations, peculiarly in impoverished areas. In this paper, a fast and visual onsite method is designed for the detection and quantification of additives in food safety by engineering a nanohybrid (MoS2/SDBS/Cu-CuFe2O4)-based catalysis. Interestingly, the nanohybrid presents peroxidase-like mimetic activity toward the substrate containing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), which are then integrated simply into a detection kit. The blue oxidated TMB in this kit can be converted completely to colorless by some bio-molecule additives in commercial food, such as glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Remarkably, this process takes just less than 2 min and the detection limits are 2.8 nM, 5.5 nM and 47 nM, respectively. These results show excellent repeatability with a statistical analysis with (*P < 0.05) over 30 tests. Next, the images of the color changes can be captured clearly using a smartphone by red-green-blue (RGB) channels, which provides an opportunity for the development of field-operation device. Additionally, our approach is applied to some targets-indicative foods, showing a recovery range between 95.8 % and 104.2 %, offering an attractive and promising pathway for future practical food safety inspection applications. More importantly, this method can easily be extended to the detection of reducing substances in other analytical fields.

6.
Adv Sci (Weinh) ; : e2403494, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943270

RESUMEN

Radical S-adenosyl-L-methionine (SAM) enzymes couple the reductive cleavage of SAM to radical-mediated transformations that have proven to be quite broad in scope. DesII is one such enzyme from the biosynthetic pathway of TDP-desosamine where it catalyzes a radical-mediated deamination. Previous studies have suggested that this reaction proceeds via direct elimination of ammonia from an α-hydroxyalkyl radical or its conjugate base (i.e., a ketyl radical) rather than 1,2-migration of the amino group to form a carbinolamine radical intermediate. However, without a crystal structure, the active site features responsible for this chemistry have remained largely unknown. The crystallographic studies described herein help to fill this gap by providing a structural description of the DesII active site. Computational analyses based on the solved crystal structure are consistent with direct elimination and indicate that an active site glutamate residue likely serves as a general base to promote deprotonation of the α-hydroxyalkyl radical intermediate and elimination of the ammonia group.

7.
Cancer Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924473

RESUMEN

Immunotherapy has greatly improved cancer treatment in recent years by harnessing the immune system to target cancer cells. The first immunotherapeutic agent approved by the US Food and Drug Administration (FDA) was interferon a (IFNa). Treatment with IFNa can lead to effective immune activation and attenuate tumor immune evasion, but persistent treatment has been shown to elicit immune suppressive effects. Here, we identified an autophagy-dependent mechanism by which IFNa triggers tumor immune evasion by upregulating PD-L1 to suppress the anti-tumor activity of CD8+ T cells. Mechanistically, IFNa increased transcription of TRIM14, which recruited the deubiquitinase USP14 to inhibit the autophagic degradation of PD-L1. USP14 removed K63-linked ubiquitin chains from PD-L1, impairing its recognition by the cargo receptor p62 (also known as SQSTM1) for subsequent autophagic degradation. Combining the USP14 inhibitor IU1 with IFNa and anti-CTLA4 treatment effectively suppressed tumor growth without significant toxicity. This work suggests a strategy for targeting selective autophagy to abolish PD-L1-mediated cancer immune evasion.

8.
Nano Lett ; 24(20): 6061-6068, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728017

RESUMEN

van der Waals (vdW) superlattices, comprising different 2D materials aligned alternately by weak interlayer interactions, offer versatile structures for the fabrication of novel semiconductor devices. Despite their potential, the precise control of optoelectronic properties with interlayer interactions remains challenging. Here, we investigate the discrepancies between the SnS/TiS2 superlattice (SnTiS3) and its subsystems by comprehensive characterization and DFT calculations. The disappearance of certain Raman modes suggests that the interactions alter the SnS subsystem structure. Specifically, such structural changes transform the band structure from indirect to direct band gap, causing a strong PL emission (∼2.18 eV) in SnTiS3. In addition, the modulation of the optoelectronic properties ultimately leads to the unique phenomenon of thermally activated photoluminescence. This phenomenon is attributed to the inhibition of charge transfer induced by tunable intralayer strains. Our findings extend the understanding of the mechanism of interlayer interactions in van der Waals superlattices and provide insights into the design of high-temperature optoelectronic devices.

9.
Chemistry ; 30(36): e202401044, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38679577

RESUMEN

Covalent organic frameworks (COFs) with ordered π structures are very promising in porous light-emitting materials. However, most of these COFs are either poor in luminescence or lack of water-stability. Herein, a series of isostructural D-A vinylene-linked COFs were constructed based a new D2h symmetric linker 1,4-bis(4,6-dimethyl-1,3,5-triazin-2-yl)benzene (TMTA) with high crystallinity, comparative high surface area and excellent chemical/thermal stability. Impressively, their adsorption and luminescence wavelength vary with respect to the density of π-systems in the electron-donating group, which constitute the foundation for molecular engineering the luminescent properties of vinylene-linked COFs. The DFT calculations further established the relationship between the luminescence properties and the donor electronic structure. Moreover, one of representative COF named FZU-203 showed inspiring applications in bioimaging, which may further provide strategic guidance for the use of vinylene-linked COFs as fluorescent nanoprobes in non-invasive medical diagnosis and visualization therapy of tumors.

10.
Clin Mol Hepatol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600871

RESUMEN

Background & Aims: The shortage of donor livers hinders the development of liver transplantations. This study aimed to clarify the poor outcomes of functioned marginal liver grafts (FMLs) and provide evidence for the improvement of ischemia-free liver transplantation (IFLT) on transplantation with FMLs. Methods: Propensity score matching was used to control for confounding factors. The outcomes of the control group and FMLs were compared to demonstrate the negative impact of FMLs in liver transplantation patients. We compared the clinical improvements of the different surgical types. To elucidate the underlying mechanism, we conducted bioinformatic analysis based on transcriptome and single-cell profiles. Results: FMLs showed a significantly higher Hazard Ratio (HR: 1.969, P = 0.018) than other marginal livers. A worse 90-days survival (12.3% vs. 5.0%, P = 0.007) was observed in patients who underwent FMLs. Patients receiving FMLs had a significant overall survival benefit after IFLT (10.4% vs. 31.3%, P = 0.006). Pyroptosis and inflammation are inhibited in patients who undergo IFLT. The infiltration of Natural Killer cells was lower in liver grafts from these patients. A positive relationship was observed between IL32 and Caspase 1 (R = 0.73, P = 0.01) and Gasdermin D (R = 0.84, P = 0.0012) in the bulk transcriptome profiles. Conclusion: FMLs function as a more important negative prognostic parameter than other marginal livers do. IFLT might ameliorate liver injury in FMLs by inhibiting the infiltration of NK cells, consequently leading to the abortion of IL-32, which drives pyroptosis in monocytes and macrophages.

11.
Bioresour Bioprocess ; 11(1): 33, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38647936

RESUMEN

Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-ß-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.

12.
JACS Au ; 4(4): 1654-1663, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665664

RESUMEN

Unspecific peroxygenases (UPOs), secreted by fungi, demonstrate versatility in catalyzing challenging selective oxyfunctionalizations. However, the number of peroxygenases and corresponding variants with tailored selectivity for a broader substrate scope is still limited due to the lack of efficient engineering strategies. In this study, a new unspecific peroxygenase from Coprinopsis marcescibilis (CmaUPO) is identified and characterized. To enhance or reverse the enantioselectivity of wildtype (WT) CmaUPO catalyzed asymmetric hydroxylation of ethylbenzene, CmaUPO was engineered using an efficient superfolder-green-fluorescent-protein (sfGFP)-mediated secretion system in Escherichia coli. Iterative saturation mutagenesis (ISM) was used to target the residual sites lining the substrate tunnel, resulting in two variants: T125A/A129G and T125A/A129V/A247H/T244A/F243G. The two variants greatly improved the enantioselectivities [21% ee (R) for WT], generating the (R)-1-phenylethanol or (S)-1-phenylethanol as the main product with 99% ee (R) and 84% ee (S), respectively. The sfGFP-mediated secretion system in E. coli demonstrates applicability for different UPOs (AaeUPO, CciUPO, and PabUPO-I). Therefore, this developed system provides a robust platform for heterologous expression and enzyme engineering of UPOs, indicating great potential for their sustainable and efficient applications in various chemical transformations.

13.
Am J Transplant ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615902

RESUMEN

The shortage of transplant organs remains a severe global issue. Normothermic machine perfusion (NMP) has the potential to increase organ availability, yet its efficacy is hampered by the inflammatory response during machine perfusion. Mouse liver ischemia-reperfusion injury (IRI) models, discarded human liver models, and porcine marginal liver transplantation models were utilized to investigate whether farnesoid X receptor (FXR) activation could mitigate inflammation-induced liver damage. FXR expression levels before and after reperfusion were measured. Gene editing and coimmunoprecipitation techniques were employed to explore the regulatory mechanism of FXR in inflammation inhibition. The expression of FXR correlates with the extent of liver damage after reperfusion. Activation of FXR significantly suppressed the inflammatory response triggered by IRI, diminished the release of proinflammatory cytokines, and improved liver function recovery during NMP, assisting discarded human livers to reach transplant standards. Mechanistically, FXR disrupts the interaction between p65 and p300, thus inhibiting modulating the nuclear factor kappa-B signaling pathway, a key instigator of inflammation. Our research across multiple species confirms that activating FXR can optimize NMP by attenuating IRI-related liver damage, thereby improving the utilization of marginal livers for transplantation.

14.
Sci Rep ; 14(1): 9461, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658587

RESUMEN

Average windward area is an important index for calculating the trajectory, velocity attenuation and terminal effect of explosive fragments. In order to solve the problems that existing theoretical method cannot calculate windward area of irregular fragment and experiment method is not convenient for automatic calculation and has low accuracy, a Monte Carlo subdivision projection simulation algorithm is proposed. The average windward area of arbitrary shaped fragments can be obtained with coordinate translation, random rotation, plane projection, convex-hull triangulation, concave boundary searching and sorting with maximum edge length constraint, subdivision area calculation, and averaging by thousands of cycles. Results show that projection area obtained by the subdivision projection algorithm is basically the same as that obtained by software method of computer aided design. Moreover, the maximum calculation error of the algorithm is less than 7%, and its accuracy is much higher than that of the equivalent ellipsoid method. The average windward area calculated by the Monte Carlo subdivision projection simulation algorithm is consistent with theoretical formula for prefabricated fragments, and the error is less than 3%. The convergence and accuracy of the Monte Carlo subdivision projection algorithm are better than those of the icosahedral uniform orientation method.

15.
Transplant Direct ; 10(5): e1597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38617464

RESUMEN

Background: In organ transplantation, ischemia, and reperfusion injury (IRI) is considered as an inevitable event and the major contributor to graft failure. Ischemia-free liver transplantation (IFLT) is a novel transplant procedure that can prevent IRI and provide better transplant outcomes. However, a large animal model of IFLT has not been reported. Therefore, we develop a new, reproducible, and stable model of IFLT in pigs for investigating mechanisms of IFLT in IRI. Methods: Ten pigs were subjected to IFLT or conventional liver transplantation (CLT). Donor livers in IFLT underwent 6-h continuous normothermic machine perfusion (NMP) throughout graft procurement, preservation, and implantation, whereas livers in CLT were subjected to 6-h cold storage before implantation. The early reperfusion injury was compared between the 2 groups. Results: Continuous bile production, low lactate, and liver enzyme levels were observed during NMP in IFLT. All animals survived after liver transplantation. The posttransplant graft function was improved with IFLT when compared with CLT. Minimal histologic changes, fewer apoptotic hepatocytes, less sinusoidal endothelial cell injury, and proinflammatory cytokine (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-α) release after graft revascularization were documented in the IFLT group versus the CLT group. Conclusions: We report that the concept of IFLT is achievable in pigs. This innovation provides a potential strategy to investigate the mechanisms of IRI and provide better transplant outcomes for clinical practice.

16.
Am J Transplant ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642712

RESUMEN

Immune checkpoint inhibitors (ICIs) as a downstaging or bridging therapy for liver transplantation (LT) in hepatocellular carcinoma patients are rapidly increasing. However, the evidence about the feasibility and safety of pre-LT ICI therapy is limited and controversial. To this end, a multicenter, retrospective cohort study was conducted in 11 Chinese centers. The results showed that 83 recipients received pre-LT ICI therapy during the study period. The median post-LT follow-up was 8.1 (interquartile range 3.3-14.6) months. During the short follow-up, 23 (27.7%) recipients developed allograft rejection, and 7 of them (30.4%) were diagnosed by liver biopsy. Multivariate logistics regression analysis showed that the time interval between the last administration of ICI therapy and LT (TLAT) ≥ 30 days was an independent protective factor for allograft rejection (odds ratio = 0.096, 95% confidence interval 0.026-0.357; P < .001). Multivariate Cox analysis showed that allograft rejection was an independent risk factor for overall survival (hazard ratio = 9.960, 95% confidence interval 1.006-98.610; P = .043). We conclude that patients who receive a pre-LT ICI therapy with a TLAT shorter than 30 days have a much higher risk of allograft rejection than those with a TLAT longer than 30 days. The presence of rejection episodes might be associated with higher post-LT mortality.

17.
J Cancer ; 15(9): 2505-2517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577598

RESUMEN

Malignant neoplasms pose a formidable threat to human well-being. Prior studies have documented the extensive expression of B7 homolog 3 (B7-H3 or CD276) across various tumors, affecting glucose metabolism. Yet, the link between metabolic modulation and immune responses remains largely unexplored. Our study reveals a significant association between B7-H3 expression and advanced tumor stages, lymph node metastasis, and tumor location in oral squamous cell carcinoma (OSCC). We further elucidate B7-H3's role in mediating glucose competition between cancer cells and CD8+ T cells. Through co-culturing tumor cells with flow cytometry-sorted CD8+ T cells, we measured glucose uptake and lactate secretion in both cell types. Additionally, we assessed interferon-gamma (IFN-γ) release and the immune and exhaustion status of CD8+ T cells. Our findings indicate that B7-H3 enhances glycolysis in OSCC and malignant melanoma, while simultaneously inhibiting CD8+ T cell glycolysis. Silencing B7-H3 led to increased IFN-γ secretion in co-cultures, highlighting its significant role in modulating CD8+ T cell functions within the tumor microenvironment and its impact on tumorigenicity. We also demonstrate that glycolysis inhibition can be mitigated by exogenous glucose supplementation. Mechanistically, our study suggests B7-H3's influence on metabolism might be mediated through the phosphoinositide3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway. This research unveils how B7-H3 affects immune functions via metabolic reprogramming.

18.
Anal Chem ; 96(14): 5546-5553, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551480

RESUMEN

The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 µL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Lisina Acetiltransferasas , Humanos , Neoplasias Pulmonares/diagnóstico , Técnicas Electroquímicas
19.
Environ Res ; 251(Pt 1): 118650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458586

RESUMEN

The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 µmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.


Asunto(s)
Enoxacino , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Contaminantes Químicos del Agua , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Hierro/química , Enoxacino/química , Catálisis , Peróxido de Hidrógeno/química , Antibacterianos/química
20.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537134

RESUMEN

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...