Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(34): e202400321, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38625710

RESUMEN

Two novel isostructural cyanide-bridged hexadecanuclear complexes with the general formula {[Fe(CN)6]6[M{en(Bn)py}]10}2+ [M=Fe (12+), Ni (22+)] have been synthesized. The structural analyses disclose the presence of multivalent Fe centres with different spin states in complex 12+ whereas all the Fe centres share a conserved oxidation state in complex 22+. The DC magnetic study revealed antiferromagnetic interactions between the adjacent metal centres and ferrimagnetic behaviour in 12+. On the other hand, ferromagnetic interactions were observed in complex 22+ due to nearly orthogonal orientation of the interacting orbitals and poor spatial overlap as observed in BS-DFT calculations.

2.
ACS Appl Bio Mater ; 7(4): 2423-2449, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478915

RESUMEN

In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(µ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(µ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a µ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear µ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare µ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Compuestos Organoplatinos , Cobre/farmacología , Cobre/química , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas
3.
ACS Appl Bio Mater ; 7(1): 332-343, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38116621

RESUMEN

The wound recovery phenomenon remains as one of the long challenging concerns worldwide. In search of user-friendly dressing materials, in this report, we fabricated a rational combinatorial strategy utilizing stereogenic harmony in a triphenylalanine fragment and appending it to δ-amino valeric acid at the N-terminus (hydrogelators I-VII) such that a potential scaffold could be fished out from the design. Our investigations revealed that all the hydrogelators displayed not only excellent self-healing performance as well as high mechanical strength at physiological pH but also mechanical stress-triggered gel-sol-gel transition properties. The structural and morphological investigation confirmed the presence of ß-sheet-like assemblies stabilized by intermolecular H-bonding and π-π interactions. Moreover, these scaffolds showed substantial antibacterial as well as antifungal efficacy against common wound pathogens, i.e, four Gram-positive bacteria (Staphylococcus aureus, Streptococcus mutans, B. subtilis, E. fecalis), four Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, P. aerugonosa, Proteus spp.), and two fungal strains (C. albicans and A. niger). The manifestation of consistent antioxidant properties might be due to the enhancement of amphiphilicity in hydrogelators, which has led to the generation of reactive oxygen species (ROS) in a facile manner, a probable mechanism to damage the microbial membrane, the driving force behind the antimicrobial efficacy. Also, the constructs exhibited proteolytic resistance and remarkable biocompatibility toward mammalian cells. Thus, based on the above benchmarks, the homochiral hydrogelator IV was seived out from a pool of seven, and we proceeded toward its in vivo evaluation using full-thickness excisional wounds in Wister rats. The scaffolds also accentuated the re-epithelialization as well in comparison to the negative control, thereby facilitating the wound closure process in a very short span of time (10 days). Overall, our in vitro and in vivo analysis certifies hydrogelator IV as an ideal dressing material that might hold immense promise for future wound care management.


Asunto(s)
Antibacterianos , Antiinfecciosos , Ratas , Animales , Ratas Wistar , Antibacterianos/química , Staphylococcus aureus , Antioxidantes , Mamíferos
4.
Chemistry ; 29(39): e202300060, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37102788

RESUMEN

Herein, three dinuclear iron(II) helicates bearing the molecular formula [Fe2 (L1)3 ](ClO4 )4 ⋅ 2CH3 OH ⋅ 3H2 O (complex 1), [Fe2 (L2)3 ](ClO4 )4 ⋅ 6CH3 CN (complex 2), and [Fe2 (L3)3 ](ClO4 )4 ⋅ 0.5H2 O (complex 3) have been synthesized using imidazole and pyridine-imine-based ligands having fluorene moiety in the backbone. A change in the ligand field strength by terminal modulation led to a change in the spin-transition behaviour from incomplete, multi-step to complete, around room temperature in the solid state. Spin transition behaviour has also been observed in the solution phase characterized using variable temperature 1 H nuclear magnetic resonance spectroscopy (Evans method) and correlated using UV-visible spectroscopy. Fitting the NMR data using the ideal solution model yielded the transition temperature in the order T1/2 (1)

5.
Chem Biodivers ; 19(9): e202200116, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35983935

RESUMEN

A set of new heterocyclic analogs (Compounds I-IX), comprising of 6,7 dimethyl Quinoxalines were found to be active against the receptor GSK3ß (Compounds IV-V) (Chem. Biodiversity 2021, 18, e2100364). In an effort to modulate effective CDK5 inhibitors herein our hypothesis underpinned to fish out an appropriate derivative from the same quinoxaline series, as these two targets GSK3ß and CDK5 shared structural resemblance with each other. Aligned to the goal we have synthesized Compounds I-IX, characterized them using a combination of spectroscopic techniques and evaluated their activities against CDK5. Our analysis reflected that the adjacently located alkoxy/hydroxy functionality derivatives namely Compounds III and VI, to be the most potent (micromolar) amongst others in the series, backed by Density Functional Theory (DFT) calculations and molecular modelling studies. Also, the efficacy of the Compounds I-IX, were monitored in few other members of the CMGC family namely DYRK1A, CLK1and CK1δ that have been known to be directly involved in hyperphosphorylation of Tau. But unfortunately in none of the targets, our quinoxaline series were active. In a nut shell further optimisation of these intelligent nucleus, would not only lead to the discovery of novel pharmacophores, but also marked selectivity against a pool of kinases, thereby implementing a distinct roadmap towards the design of potential therapeutics against Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta , Quinoxalinas/farmacología
6.
Chem Asian J ; 17(17): e202200622, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726858

RESUMEN

Three heterometallic hexanuclear 3d-4f complexes bearing the formula [Cu2 (L)2 Ln4 (L)4 (o-van)2 ] [L=2-((E)-((2-hydroxyphenyl)imino]methyl)phenol; o-van=ortho-vanillin] (LnIII =GdIII (1), DyIII (2), and TbIII (3)) have been synthesized and characterized. DC magnetic susceptibility measurements reveal overall antiferromagnetic interactions in 1 and 3, whereas co-existence of ferro- as well as antiferromagnetic interactions were observed in 2. The magnetocaloric effect has been observed for 1 with an entropy change (-ΔSm ) of 22.3 J kg-1 K-1 at 3 K and 7 T. Zero-field single molecule magnet (SMM) behaviour has been observed for 2, where Raman relaxation and quantum tunneling of magnetization (QTM) played a role in magnetization relaxation. The Cu-O-Ln angle well explains the magnetic exchange coupling occurring in the complexes. BS-DFT calculation for the complexes provides an estimate of the exchange interactions between the paramagnetic centres. Ab initio calculations performed for complex 2 established a good correlation to the experimental relaxation dynamics.

7.
Chem Biodivers ; 18(11): e2100364, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34486216

RESUMEN

Untangling the most selective kinase inhibitors via pharmacological intervention remains one of the challenging affairs to date. In accordance to this drift, herein we describe the design and synthesis of a set of new heterocyclic analogs consisting of 6,7-dimethyl Quinoxaline, appended to a connector, employing Schiff base strategy (Compounds I-IX). The compounds were characterized by various spectroscopic techniques and the kinase inhibition assay were performed on few prime members of the CMGC family namely the GSK3ß, DYRK1A and CLK1 receptors, respectively, that have been known to be directly involved in hyperphosphorylation of Tau. Interestingly the biological evaluation results revealed that Compounds IV and V, with bromo/chloro functionalities in the aromatic core were advantaged of being highly selective towards the target GSK3ß over others. To strengthen our analysis, we adopted molecular modelling studies, where compounds IV/V were redocked in the same grid 4AFJ, as that of the reference ligand, 5-aryl-4-carboxamide-1,3-oxazole. Surprisingly, our investigation underpinned that for both the compounds IV/V, a primary H-bonding existed between the designed molecules (IV/V) and Val 135 residue in the receptor GSK3ß, in line with the reference ligand. We attribute this interaction to instigate potency in the compounds. Indeed the other non-covalent interaction, between the derivative's aromatic nucleus and Arg 141/Thr 138 in the receptor GSK3ß, might have been responsible for enhancing the selectivity in the targets. Overall, we feel that the present work depicts a logical demonstration towards fine tuning the efficacy of the inhibitors through systematic adjustment of electron density at appropriate positions in the aromatic ring be it the main quinoxaline or the other aromatic nucleus. Thus this pathway offers a convenient strategy for the development of efficient therapeutics for diversified neurodegenerative diseases like that of Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Quinoxalinas/farmacología , Enfermedad de Alzheimer/metabolismo , Desarrollo de Medicamentos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Quinoxalinas/síntesis química , Quinoxalinas/química , Quinasas DyrK
8.
ACS Appl Bio Mater ; 4(5): 4119-4130, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006826

RESUMEN

Deciphering the most promising strategy for the evolution of microbial infection and inflammation-based therapeutics is one of the most challenging affairs to date. Development of peptide-based smart supergelators with innate antimicrobial and anti-inflammatory activities is an appealing way out. In this work, the hydrogelators Boc-δ-Ava-(X)-Phe-(Y)-Phe-OH (I: X = Y = L; II: X = L; Y = D; III: X = D; Y = L; IV: X = Y = D, Ava: δ-amino valeric acid) have been designed and fabricated by strategic chiral tuning to investigate the effect of alternation of configuration(s) of Phe residues in governing the fashion of self-aggregation and macroscopic properties of peptides. Interestingly, all of the molecules formed mechanoresponsive hydrogels under physiological conditions with a nanofibrillar network. The spectroscopic experiments confirmed the conformation of the hydrogelators to be supramolecular ß-sheets formed through the self-association of S-shaped constructs stabilized by noncovalent interactions. Indeed, the present work demonstrates a rational approach toward regulating the mechanical integrity of the hydrogels through systematic inclusion of d-amino acids at appropriate positions in the sequence. The hydrogelators were found to possess antimicrobial activity against both Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) while retaining their biocompatibility toward mammalian cells (as revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), hemolysis, and lipid peroxidation assays). These scaffolds also exhibited anti-inflammatory activities, as observed through in vitro MMP2/MMP9 inhibition studies and in vivo animal models, namely, the rat pouch model for acute inflammation. We anticipate that the discovery of these intelligent materials with multifunctional capabilities holds future promise as preferential therapeutics for the treatment of bacterial infections as well as associated inflammations arising alone or as side effects of biomaterial implants.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Oligopéptidos/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Teoría Funcional de la Densidad , Hidrogeles/síntesis química , Hidrogeles/química , Ensayo de Materiales , Ratones , Pruebas de Sensibilidad Microbiana , Oligopéptidos/síntesis química , Oligopéptidos/química , Tamaño de la Partícula , Ratas
9.
Sci Total Environ ; 640-641: 406-418, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864657

RESUMEN

Fluoride (F-) in groundwater poses a severe public health threat in the Dwarka River Basin (DRB) of West Bengal, India, where many cases of fluorosis have been reported. This research evaluates the spatial distribution patterns of major cations and anions, delineates zones of high F- concentrations within alluvial sediments of the DRB, and identifies both the sources and the geochemical processes responsible for the release of F- to groundwater. A total of 607 groundwater samples were collected from shallow and deep tube wells located within the DRB, encompassing an area of 435 km2 and including 211 villages. Fluoride levels range from 0.01 to 10.6 mg/L, and high concentrations (>1.5 mg/L) are restricted to isolated areas within the basin (occurring within nine of the villages and comprising 4.3% of the samples collected). The high-fluoride areas are characterized by mostly Na-HCO3 type groundwater, where the abundance of cations and anions are Na+ > Ca2+ > Mg2+ > K+ and HCO3- > Cl- > SO42- > F- > NO3- > Br-, respectively. Analyses of the groundwater geochemistry and sediment mineralogy suggest that fluoride is released to groundwater primarily through the hydrolysis of albite and biotite; however, the resulting alkaline conditions are also favorable for release of fluoride from weathered biotite and clay minerals through anion exchange (OH- in groundwater replacing F- within the mineral structure). Multiple linear regression models show that fluoride concentrations can be predicted from the measures of other dissolved constituents with a high degree of accuracy (R2 = 0.96 for high fluoride samples and R2 = 0.8 for low fluoride samples).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...