Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1142144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168123

RESUMEN

Bio-control agents are the best alternative to chemicals for the successful management of plant diseases. The fungus Aspergillus niger is known to produce diverse metabolites with antifungal activity, attracting researchers to exploit it as a bio-control agent for plant disease control. In the present study, 11 A. niger strains were isolated and screened for their antagonism against the guava wilt pathogen under in vitro and in planta conditions. Strains were identified morphologically and molecularly by sequencing the internal transcribed spacer (ITS), ß-tubulin, and calmodulin genes. The strains were evaluated through dual culture, volatile, and non-volatile methods under an in vitro study. AN-11, AN-6, and AN-2 inhibited the test pathogen Fusarium oxysporum f. sp. psidii (FOP) at 67.16%, 64.01%, and 60.48%, respectively. An in planta study was conducted under greenhouse conditions with 6 months old air-layered guava plants (var. Allahabad Safeda) by pre- and post-inoculation of FOP. The AN-11 strain was found to be effective under both pre- and post-inoculation trials. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis was carried out to characterize the volatile compounds of the most potential strain, A. niger. The hexane soluble fraction showed the appearance of characteristic peaks of hexadecenoic acid methyl ester (4.41%), 10-octadecanoic acid methyl ester (3.79%), dodecane (3.21%), undecane (3.19%), gibepyrone A (0.15%), 3-methylundecane (0.36%), and citroflex A (0.38%). The ethyl acetate fraction of the bio-control fungi revealed the occurrence of major antifungal compounds, such as acetic acid ethyl ester (17.32%), benzopyron-4-ol (12.17%), 1,2,6-hexanetriol (7.16%), 2-propenoic acid ethanediyl ester (2.95%), 1-(3-ethyloxiranyl)-ethenone (0.98%), 6-acetyl-8-methoxy dimethyl chromene (0.96%), 4-hexyl-2,5-dihydro dioxo furan acetic acid (0.19%), and octadecanoic acid (1.11%). Furthermore, bio-control abilities could be due to hyper-parasitism, the production of secondary metabolites, and competition for sites and nutrients. Indeed, the results will enrich the existing knowledge of metabolomic information and support perspectives on the bio-control mechanism of A. niger.

2.
PLoS One ; 18(4): e0284277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37043497

RESUMEN

BACKGROUND: Kernel row number (KRN) is an important yield component trait with a direct impact on the productivity of maize. The variability in KRN is influenced by the inflorescence meristem size, which is determined by the CLAVATA-WUSCHEL pathway. A CLAVATA receptor-like protein, encoded by the FASCIATED EAR2 (fea2gene), enhances the growth of inflorescence meristem and is thus involved in the determination of KRN. The amplicon sequencing-based method was employed to dissect the allelic variation of the fea2 gene in tropical field corn. METHODOLOGY/PRINCIPAL FINDING: Amplicon-based sequencing of AI 535 (Low KRN) and AI 536 (High KRN) was undertaken for the gene fea 2 gene that codes for KRN in maize. Upon multiple sequence alignment of both sequences, A to T transversion at the 1311 position was noticed between Low KRN and High KRN genotypes resulting in different allelic forms of a fea2 gene in tropical maize. An allele-specific primer 1311 fea2.1 was designed and validated that can differentiate High and Low KRN genotypes. CONCLUSION/SIGNIFICANCE: Maize has high variability for KRN and is exemplified by the wide values ranging from 8-26 KRN in the maize germpalsm. The sequence-based approach of SNP detection through the use of a specific primer facilitated the detection of variation present in the target trait. This makes it possible to capture these variations in the early generation. In the study, the PCR-based differentiation method described for the identification of desirable high KRN genotypes would augment the breeding programs for improving the productivity of field corn.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Alelos , Fenotipo , Meristema
3.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862513

RESUMEN

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Insuficiencia Renal Crónica , Ratones , Humanos , Animales , Vitamina D/metabolismo , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Calcio/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Front Cell Dev Biol ; 11: 1138504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936695

RESUMEN

Drug nephrotoxicity is a common healthcare problem in hospitalized patients and a major limitation during drug development. Multi-segmented kidney organoids derived from human pluripotent stem cells may complement traditional cell culture and animal experiments for nephrotoxicity assessment. Here we evaluate the capability of kidney organoids to investigate drug toxicity in vitro. Kidney organoids express renal drug transporters, OAT1, OAT3, and OCT2, while a human proximal tubular cell line shows the absence of OAT1 and OAT3. Tenofovir and aristolochic acid (AA) induce proximal tubular injury in organoids which is ameliorated by an OAT inhibitor, probenecid, without damage to podocytes. Similarly, cisplatin causes proximal tubular damage that can be relieved by an OCT inhibitor, cimetidine, collectively suggesting the presence of functional OATs and OCTs in organoid proximal tubules. Puromycin aminonucleoside (PAN) induced segment-specific injury in glomerular podocytes in kidney organoids in the absence of tubular injury. Reporter organoids were generated with an ATP/ADP biosensor, which may be applicable to high-throughput screening in the future. In conclusion, the kidney organoid is a useful tool for toxicity assessment in the multicellular context and may contribute to nephrotoxicity assessment during drug development.

5.
Life (Basel) ; 13(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36983893

RESUMEN

Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species of Brassica for their potential tolerance against heat and drought stress during germination and in order to examine the early seedling stage. We identified the germplasms based on the mean membership function value (MFV), which was calculated from the tolerance index of shoot length, root length, and biochemical analysis. The study revealed that B. napus (GSC-6) could withstand high temperatures and drought. Other genotypes that were tolerant to the impact of heat stress were B. tournefortii (RBT 2002), D. gomez-campoi, B. tournefortii (Rawa), L. sativum, and B. carinata (PC-6). C. sativa resisted drought but did not perform well when subjected to high temperatures. Tolerance to drought was observed in B. fruticulosa (Spain), B. tournefortii (RBT 2003), C. bursa-pastoris (late), D. muralis, C. abyssinica (EC694145), C. abyssinica (EC400058) and B. juncea (Pusa Jaikisan). This investigation contributes to germplasm characterization and the identification of the potential source of abiotic stress tolerance in the Brassica breeding programme. These identified genotypes can be potential sources for transferring the gene(s)/genomic regions that determine tolerance to the elite cultivars.

6.
Am J Physiol Cell Physiol ; 324(3): C757-C768, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745528

RESUMEN

Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.


Asunto(s)
Señalización del Calcio , Calcio , Túbulos Renales , Animales , Ratones , Calcio/metabolismo , Fura-2 , Canales Iónicos/metabolismo , Riñón/metabolismo , Túbulos Renales/metabolismo
7.
Sci Rep ; 12(1): 21855, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528657

RESUMEN

White mold commonly known as Sclerotinia sclerotiorum causes stem rot disease and has emerged as one of the major fungal pathogens of oilseed Brassica across the world. In the present study, consistently virulent S. sclerotiorum isolate "ESR-01" was sequenced and an assembly size of ~ 41 Mb with 328 scaffolds having N50 of 447,128 was obtained. Additionally, 27,450 single nucleotide polymorphisms (SNPs) were identified from 155 scaffolds against S. sclerotiorum 1980 isolate, with an average SNP density of ~ 1.5 per kb genome. 667 repetitive elements were identified and approximately comprised 7% of the total annotated genes. The DDE_1 with 454 in numbers was found to be the most abundant and accounts for 68% of the total predicted repetitive elements. In total, 3844 simple sequence repeats are identified in the 328 scaffolds. A total of 9469 protein-coding genes were predicted from the whole genome assembly with an average gene length of 1587 bp and their distribution as 230.95 genes per Mb in the genome. Out of 9469 predicted protein-coding genes, 529 genes were observed encoding the CAZymes (Carbohydrate-Active enzymes) capable of degradation of the complex polysaccharides. Glycosyltransferase (GT) families were most abundant (49.71%) among the predicted CAZymes and GT2 (23%), GT4 (20%), and glycoside hydrolase (GH) 23% with GH18 (11%) were the prominent cell wall degrading enzyme families in the ESR-01 secretome. Besides this, 156 genes essential for the pathogen-host interactions were also identified. The effector analysis in the whole genome proteomics dataset revealed a total of 57 effector candidates (ECs) and 27 of them were having their analogs whereas the remaining 30 were novel ones. Eleven selected ECs were validated experimentally by analyzing the expression profile of the ESR-01 isolate of S. sclerotiorum. Together, the present investigation offers a better understanding of the S. sclerotiorum genome, secretome, and its effector repertoire which will help in refining the present knowledge on S. sclerotiorum-Brassica interactions and necrotrophic lifestyle of the phytopathogen in general.


Asunto(s)
Ascomicetos , Brassica , Especificidad del Huésped , Secretoma , Mapeo Cromosómico , Brassica/genética , Enfermedades de las Plantas/microbiología
8.
Front Cell Dev Biol ; 10: 978888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046340

RESUMEN

Kidney organoids derived from hPSCs have opened new opportunities to develop kidney models for preclinical studies and immunocompatible kidney tissues for regeneration. Organoids resemble native nephrons that consist of filtration units and tubules, yet little is known about the functional capacity of these organoid structures. Transcriptomic analyses provide insight into maturation and transporter activities that represent kidney functions. However, functional assays in organoids are necessary to demonstrate the activity of these transport proteins in live tissues. The three-dimensional (3D) architecture adds complexity to real-time assays in kidney organoids. Here, we develop a functional assay using live imaging to assess transepithelial transport of rhodamine 123 (Rh123), a fluorescent substrate of P-glycoprotein (P-gp), in organoids affixed to coverslip culture plates for accurate real-time observation. The identity of organoid structures was probed using Lotus Tetragonolobus Lectin (LTL), which binds to glycoproteins present on the surface of proximal tubules. Within 20 min of the addition of Rh123 to culture media, Rh123 accumulated in the tubular lumen of organoids. Basolateral-to-apical accumulation of the dye/marker was reduced by pharmacologic inhibition of MDR1 or OCT2, and OCT2 inhibition reduced the Rh123 uptake. The magnitude of Rh123 transport was maturation-dependent, consistent with MDR1 expression levels assessed by RNA-seq and immunohistochemistry. Specifically, organoids on day 21 exhibit less accumulation of Rh123 in the lumen unlike later-stage organoids from day 30 of differentiation. Our work establishes a live functional assessment in 3D kidney organoids, enabling the functional phenotyping of organoids in health and disease.

9.
Sci Adv ; 8(38): eabq0866, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129975

RESUMEN

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Descubrimiento de Drogas , Drogas en Investigación , Humanos , Dispositivos Laboratorio en un Chip , Organoides/metabolismo , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología
10.
Theor Appl Genet ; 135(12): 4151-4167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36136128

RESUMEN

Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.


Asunto(s)
Fitomejoramiento , Sitios de Carácter Cuantitativo , Hibridación Genética , Productos Agrícolas/genética , Fenotipo
11.
Transl Res ; 250: 1-17, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750295

RESUMEN

The kidney is a vital organ that regulates the bodily fluid and electrolyte homeostasis via tailored urinary excretion. Kidney injuries that cause severe or progressive chronic kidney disease have driven the growing population of patients with end-stage kidney disease, leading to substantial patient morbidity and mortality. This irreversible kidney damage has also created a huge socioeconomical burden on the healthcare system, highlighting the need for novel translational research models for progressive kidney diseases. Conventional research methods such as in vitro 2D cell culture or animal models do not fully recapitulate complex human kidney diseases. By contrast, directed differentiation of human induced pluripotent stem cells enables in vitro generation of patient-specific 3D kidney organoids, which can be used to model acute or chronic forms of hereditary, developmental, and metabolic kidney diseases. Furthermore, when combined with biofabrication techniques, organoids can be used as building blocks to construct vascularized kidney tissues mimicking their in vivo counterpart. By applying gene editing technology, organoid building blocks may be modified to minimize the process of immune rejection in kidney transplant recipients. In the foreseeable future, the universal kidney organoids derived from HLA-edited/deleted induced pluripotent stem cell (iPSC) lines may enable the supply of bioengineered organotypic kidney structures that are immune-compatible for the majority of the world population. Here, we summarize recent advances in kidney organoid research coupled with novel technologies such as organoids-on-chip and biofabrication of 3D kidney tissues providing convenient platforms for high-throughput drug screening, disease modelling, and therapeutic applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Insuficiencia Renal Crónica , Animales , Humanos , Organoides , Riñón , Diferenciación Celular , Insuficiencia Renal Crónica/metabolismo
12.
Food Chem ; 389: 132990, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35569244

RESUMEN

Sesame is the oldest oilseed crop known to humanity, though it contributes a small share in the global vegetable oil production. Sesame oil contains nutrients, including lignans, tocopherols, phytosterols, natural antioxidants, and bioactive compounds. It provides various health benefits such as anti-lipogenic, hypo-cholesterolemic, anti-degenerative, and neural health-promoting properties. Being an under-utilized minor crop, it has not received enough research attention for its food and nutraceutical potential. The sesame crop is a potential candidate to maintain the diversity of food oils and harness its benefits for improving human health. The present review will provide detailed research on sesame oil contents, health effects, nutraceuticals, oil quality, and value addition strategies. Also, the sesame oil nutritional quality was compared with other vegetable oils, highlighting the potential health and nutrition-related benefits. The way forward for further sesame improvement through value addition traits was also discussed.


Asunto(s)
Lignanos , Sesamum , Suplementos Dietéticos , Humanos , Aceites de Plantas , Semillas , Aceite de Sésamo
13.
Mol Biol Rep ; 49(6): 4517-4524, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35474052

RESUMEN

BACKGROUND: The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the productivity in maize crops. METHODS AND RESULTS: The present investigation was carried out to select the best medium maturing inbred lines, among a set of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them in line × tester manner. CONCLUSION: Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present investigation may be exploited for heterosis breeding in filed corn. KEY MESSAGES: To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment the productivity but also improves the quality of hybrid/s.


Asunto(s)
Vigor Híbrido , Zea mays , Grano Comestible/genética , Vigor Híbrido/genética , Hibridación Genética , Fitomejoramiento , Zea mays/genética
14.
Sci Transl Med ; 14(634): eabj4772, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235339

RESUMEN

Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.


Asunto(s)
Organoides , Insuficiencia Renal Crónica , Animales , Cisplatino/farmacología , Reparación del ADN , Recombinación Homóloga , Riñón , Ratones
15.
Semin Cell Dev Biol ; 127: 68-76, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34627669

RESUMEN

Kidney organoid technology has led to a renaissance in kidney developmental biology. The complex underpinnings of mammalian kidney development have provided a framework for the generation of kidney cells and tissues from human pluripotent stem cells. Termed kidney organoids, these 3-dimensional structures contain kidney-specific cell types distributed similarly to in vivo architecture. The adult human kidney forms from the reciprocal induction of two disparate tissues, the metanephric mesenchyme (MM) and ureteric bud (UB), to form nephrons and collecting ducts, respectively. Although nephrons and collecting ducts are derived from the intermediate mesoderm (IM), their development deviates in time and space to impart distinctive inductive signaling for which separate differentiation protocols are required. Here we summarize the directed differentiation protocols which generate nephron kidney organoids and collecting duct kidney organoids, making note of similarities as much as differences. We discuss limitations of these present approaches and discuss future directions to improve kidney organoid technology, including a greater understanding of anterior IM and its derivatives to enable an improved differentiation protocol to collecting duct organoids for which historic and future developmental biology studies will be instrumental.


Asunto(s)
Organoides , Células Madre Pluripotentes , Adulto , Animales , Diferenciación Celular , Humanos , Riñón , Mamíferos , Nefronas , Organogénesis , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo
16.
J Mol Med (Berl) ; 99(4): 477-487, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33034708

RESUMEN

The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.


Asunto(s)
Riñón/citología , Organoides/citología , Investigación Biomédica Traslacional/tendencias , Animales , Diferenciación Celular , Linaje de la Célula , Técnicas de Reprogramación Celular , Predicción , Humanos , Células Madre Pluripotentes Inducidas/citología , Riñón/embriología , Túbulos Renales Colectores/embriología , Túbulos Renales Colectores/ultraestructura , Ratones , Modelos Animales , Neovascularización Fisiológica , Organogénesis , Organoides/irrigación sanguínea , Organoides/trasplante , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Investigación Biomédica Traslacional/métodos , Uréter/embriología , Uréter/ultraestructura
17.
J Microbiol Methods ; 175: 105983, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32544486

RESUMEN

The field assessment technique to evaluate the plants with a fungal phytopathogen for their tolerance to the disease is one of the crucial steps in dissecting their genetic control and in developing the resistant crop varieties. The objective behind this study was to develop and evaluate a field-based non-injury method of inoculation technique for Sclerotinia stem rot (SSR) in oilseed Brassica, caused by Sclerotinia sclerotiorum (Lib.) de Bary. The non-injury method of screening technique involves stem inoculation using a five days old mycelial mat on potato dextrose agar (PDA) plug placed on the top of sterile water-soaked cotton pad firmly wrapped over the internodal region with parafilm at the basal portion of the stem (15-20 cm above the ground) in the field. Inoculation without injury substantiates the natural means of infection in the field and the use of moist cotton pad keeps humidity for longer to initiate infection even in case of adverse climatic conditions. Disease development on the inoculated stem was measured by the length and width of the lesion. The symptom appears with water-soaked lesion formation and spreading deeper and wider on the stem in >90% of inoculated plants. During the experiment, about 800 Brassica germplasms including their wild relatives were screened and evaluated for three consecutive years using near-natural (non-injury) method of disease inoculation in the field. The Inoculation severity index (ISI) obtained during these years at Pusa, New Delhi were significantly similar and correlated with the natural infection measured in terms of disease severity index (DSI) on selected germplasm in the sick plot at ICAR-DRMR, Bharatpur. The significant correlations obtained among the used Brassica lines that were earlier not subjected for natural screening suggest the potential of this technique in evaluating the breeding material for SSR before confirmation with natural infection in the field.


Asunto(s)
Agricultura/métodos , Ascomicetos , Brassica/microbiología , Resistencia a la Enfermedad , Micosis , Enfermedades de las Plantas , Ascomicetos/patogenicidad , Micosis/microbiología , Micosis/prevención & control , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
18.
J Clin Invest ; 129(11): 4797-4816, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589169

RESUMEN

Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , Enfermedades Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales Proximales/lesiones , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Noqueados , Organoides/metabolismo , Organoides/patología
19.
Nat Methods ; 16(3): 255-262, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742039

RESUMEN

Kidney organoids derived from human pluripotent stem cells have glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which expands their endogenous pool of endothelial progenitor cells and generates vascular networks with perfusable lumens surrounded by mural cells. We found that vascularized kidney organoids cultured under flow had more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression compared with that in static controls. Glomerular vascular development progressed through intermediate stages akin to those involved in the embryonic mammalian kidney's formation of capillary loops abutting foot processes. The association of vessels with these compartments was reduced after disruption of the endogenous VEGF gradient. The ability to induce substantial vascularization and morphological maturation of kidney organoids in vitro under flow opens new avenues for studies of kidney development, disease, and regeneration.


Asunto(s)
Riñón/irrigación sanguínea , Organoides/crecimiento & desarrollo , Células Cultivadas , Fibroblastos/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Órganos , Impresión Tridimensional , Ingeniería de Tejidos
20.
J Ophthalmic Vis Res ; 13(4): 419-425, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30479711

RESUMEN

PURPOSE: The aim of this study was to examine the effect of 17ß-estradiol on Benzo(e)pyrene [B(e)P]-induced toxicity in ARPE-19 cells. METHODS: We pretreated ARPE-19 cells with 20 nM and 40 nM 17ß-estradiol for 6 hours, followed by addition of 300 µM B(e)P for additional 24 hours. Cell viability was measured using Trypan blue dye-exclusion assay. JC-1 assay was performed to measure mitochondrial membrane potential (ΔΨm). For a quantitative estimation of cell death, apoptotic markers such as caspase-3/7, caspase-9, and caspase-12 were measured. RESULTS: Our results demonstrated that when treated with B(e)P, the viability and ΔΨm of ARPE-19 cells declined by 25% and 63%, respectively (P < 0.05). However, pretreating with 17ß-estradiol increased the viability of ARPE-19 cells by 21% (20 nM) and 10% (40 nM) (P < 0.05). Furthermore, the significantly reduced ΔΨm in ßE+B(e)P treated cells ARPE-19 cells was restored by pre-treatment with 17ß-estradiol- ΔΨm was increased by 177% (20 nM) and 158% (40 nM) (P < 0.05). We further observed a significant up-regulation in the activity of Caspases-3/7, -9, and -12 in B(e)P-treated ARPE-19 cells. However, 17ß-estradiol treatment significantly reduced the activity of all apoptotic markers (P < 0.05). CONCLUSION: In conclusion, our results demonstrate that 17ß-estradiol protects ARPE-19 cells against B(e)P-induced toxicity by decreasing apoptosis, preventing cell death, and restoring mitochondrial membrane potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA