Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(2): e0058323, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38299852

RESUMEN

Periprosthetic joint infection (PJI) after total joint arthroplasty is a major concern requiring multiple surgeries and antibiotic interventions. Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli are the predominant causes of these infections. Due to biofilm formation, antibiotic treatment for patients with PJI can prolong resistance, further complicating the use of current treatments. Previous research has shown that cathodic voltage-controlled electrical stimulation (CVCES) is an effective technique to prevent/treat implant-associated biofilm infections on titanium (Ti) surfaces. This study thus evaluated the efficacy of CVCES via the use of 10% betadine alone and in combination with CVCES to eradicate lab-grown biofilms on cemented and cementless cobalt-chromium (CoCr) and Ti surfaces. CVCES treatment alone for 24 hours demonstrated no detectable CFU for E. coli and P. aeruginosa biofilms on cementless CoCr implants. In the presence of cement, E. coli biofilms had 106 CFUs/implant remaining after CVCES treatment alone; however, P. aeruginosa biofilms on cemented implants were reduced to below detectable limits. The use of 10% betadine treatment for 3 minutes followed by 24-hour CVCES treatment brought CFU levels to below detectable limits in E. coli and P. aeruginosa. The same was true for S. aureus biofilms on cementless patellofemoral implants as well as femoral and tibial implants. These treatment methods were not sufficient for eradication of S. aureus biofilms on cemented implants. These results suggest that CVCES alone and CVCES with 10% betadine are effective approaches to treating biofilms formed by certain bacterial species potentially leading to the treatment of PJI.IMPORTANCEPeriprosthetic joint infections (PJIs) are problematic due to requiring multiple surgeries and antibiotic therapies that are responsible for increased patient morbidity and healthcare costs. These infections become resistant to antibiotic treatment due to the formation of biofilms on the orthopedic surfaces. Cathodic voltage-controlled electrical stimulation (CVCES) has previously been shown to be an effective technique to prevent and treat biofilm infections on different surfaces. This study shows that CVCES can increase the efficacy of 10% betadine irrigation used in debridement, antibiotics, and implant retention by 99.9% and clear infection to below detection limits. PJI treatments are at times limited, and CVCES could be a promising technology to improve patient outcomes.


Asunto(s)
Infección Hospitalaria , Infecciones Relacionadas con Prótesis , Humanos , Povidona Yodada , Staphylococcus aureus , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Relacionadas con Prótesis/prevención & control , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Titanio , Estimulación Eléctrica
2.
Microorganisms ; 11(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764142

RESUMEN

BACKGROUND: Multispecies biofilm orthopedic infections are more challenging to treat than mono-species infections. In this in-vitro study, we aimed to determine if a multispecies biofilm, consisting of Gram positive and negative species with different antibiotic susceptibilities could be treated more effectively using high purity antibiotic-loaded calcium sulfate beads (HP-ALCSB) containing vancomycin (VAN) and tobramycin (TOB) in combination than alone. METHODS: Three sets of species pairs from bioluminescent strains of Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) and clinical isolates, Enterococcus faecalis (EF) and Enterobacter cloacae were screened for compatibility. PA + EF developed intermixed biofilms with similar cell concentrations and so were grown on 316L stainless steel coupons for 72 h or as 24 h agar lawn biofilms and then treated with HP-ALCSBs with single or combination antibiotics and assessed by viable count or bioluminescence and light imaging to distinguish each species. Replica plating was used to assess viability. RESULTS: The VAN + TOB bead significantly reduced the PA + EF biofilm CFU and reduced the concentration of surviving antibiotic tolerant variants by 50% compared to single antibiotics. CONCLUSIONS: The combination of Gram-negative and positive targeted antibiotics released from HP-ALCSBs may be more effective in treating multispecies biofilms than monotherapy alone.

3.
Appl Environ Microbiol ; 88(22): e0121722, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286507

RESUMEN

Periprosthetic joint infection (PJI) after joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. Recent in vitro research has shown that PJI staphylococcal strains rapidly form antibiotic-resistant free-floating aggregates in the presence of bovine synovial fluid (BSF). Staphylococcal aggregates are also present in human PJI joint fluid. However, the influence of surface roughness and fluid shear on the attachment and retention of such aggregates on surfaces is not known. Our aim was to assess how surface roughness and fluid shear stress influenced the attachment and retention of Staphylococcus aureus BSF-mediated aggregates on smooth- and rough-patterned titanium in flow cells compared to nonaggregated cells. The attachment of S. aureus aggregates was significantly greater than that of single cells but was independent of surface roughness; however, on the patterned surfaces, aggregates preferentially accumulated in the grooves. Fibrous components in the BSF were also colocalized with the grooves. After a 24-h attachment-and-incubation period, different shear stresses were applied. There was significant detachment from flat surfaces at a flow rate of 1 mL/min (τw = 0.0012 Pa) but minimal detachment from the patterned surfaces, even at flow rates as high as 13.9 mL/min (τw = 0.0169 Pa). The retention of bacterial aggregates and biofilms on rough surfaces exposed to shear might be an important consideration for the location of colonization on orthopedic implants, which can have wide ranges of roughness and surface features and can influence the efficacy of shear-based debridement methods such as pulse lavage. IMPORTANCE Periprosthetic joint infections occurring after joint replacement are a major clinical problem requiring repeated surgeries and antibiotic interventions. Staphylococcus aureus is the most prominent bacterium causing most implant-related infections. S. aureus can form a biofilm, which is defined as a group of attached bacteria with the formation of an envelope that is resistant to antibiotics. The attachment and retention of these bacteria on implant surfaces are not clearly understood. Recent in vitro research investigations have shown that staphylococcal strains rapidly form aggregates in the presence of bovine synovial fluid (BSF) in the joints, which allows bacteria time to attach to the implant surface, leading to biofilm formation. Thus, in this study, we examined the attachment of aggregates on titanium surfaces with varying roughnesses and found robust bacterial attachment and retention along the ridges and grooves, which colocalized with the deposition of fibrous components present in the BSF.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Bovinos , Animales , Humanos , Líquido Sinovial/microbiología , Titanio , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Staphylococcus , Bacterias
4.
Microorganisms ; 10(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35336161

RESUMEN

Implant-associated infection is a major complication of orthopedic surgery. One of the most common organisms identified in periprosthetic joint infections is Staphylococcus aureus, a biofilm-forming pathogen. Orthopedic implants are composed of a variety of materials, such as titanium, polyethylene and stainless steel, which are at risk for colonization by bacterial biofilms. Little is known about how larger surface features of orthopedic hardware (such as ridges, holes, edges, etc.) influence biofilm formation and attachment. To study how biofilms might form on actual components, we submerged multiple orthopedic implants of various shapes, sizes, roughness and material type in brain heart infusion broth inoculated with Staphylococcus aureus SAP231, a bioluminescent USA300 strain. Implants were incubated for 72 h with daily media exchanges. After incubation, implants were imaged using an in vitro imaging system (IVIS) and the metabolic signal produced by biofilms was quantified by image analysis. Scanning electron microscopy was then used to image different areas of the implants to complement the IVIS imaging. Rough surfaces had the greatest luminescence compared to edges or smooth surfaces on a single implant and across all implants when the images were merged. The luminescence of edges was also significantly greater than smooth surfaces. These data suggest implant roughness, as well as large-scale surface features, may be at greater risk of biofilm colonization.

5.
Antibiotics (Basel) ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34438938

RESUMEN

Periprosthetic joint infection (PJI) occurring after artificial joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. Staphylococcus aureus is the common bacteria responsible for PJI. Recent in vitro research has shown that staphylococcal strains rapidly form free-floating aggregates in the presence of synovial fluid (SF) with biofilm-like resistance to antimicrobial agents. However, the development of biofilms formed from these aggregates under shear have not been widely investigated. Thus, in this study, we examined the progression of attached biofilms from free-floating aggregates. Biofilms were grown for 24 h in flow cells on titanium discs after inoculation with either pre-aggregated or single planktonic cells. Image analysis showed no significant difference between the biofilm formed from aggregates vs. the planktonic cells in terms of biomass, surface area, and thickness. Regarding antibiotic susceptibility, there were 1 and 2 log reductions in biofilms formed from single cells and aggregates, respectively, when treated with vancomycin for 24 h. Thus, this study demonstrates the formation of biofilm from free-floating aggregates and follows a similar developmental time period and shows similar antibiotic tolerance to more traditionally inoculated in vitro flow cell biofilms.

6.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709721

RESUMEN

Periprosthetic joint infection (PJI) occurring after artificial joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. Staphylococcus aureus is the bacterium most commonly responsible for PJI. Recent in vitro research has shown that staphylococcal strains rapidly form aggregates in the presence of synovial fluid (SF). We hypothesize that these aggregates provide early protection to bacteria entering the wound site, allowing them time to attach to the implant surface, leading to biofilm formation. Thus, understanding the attachment kinetics of these aggregates is critical in understanding their adhesion to various biomaterial surfaces. In this study, the number, size, and surface area coverage of aggregates as well as of single cells of S. aureus were quantified under various conditions on different orthopedic materials relevant to orthopedic surgery: stainless steel (316L), titanium (Ti), hydroxyapatite (HA), and polyethylene (PE). It was observed that, regardless of the material type, SF-induced aggregation resulted in reduced aggregate surface attachment and greater aggregate size than the single-cell populations under various shear stresses. Additionally, the surface area coverage of bacterial aggregates on PE was relatively high compared to that on other materials, which could potentially be due to the rougher surface of PE. Furthermore, increasing shear stress to 78 mPa decreased aggregate attachment to Ti and HA while increasing the aggregates' average size. Therefore, this study demonstrates that SF induced inhibition of aggregate attachment to all materials, suggesting that biofilm formation is initiated by lodging of aggregates on the surface features of implants and host tissues.IMPORTANCE Periprosthetic joint infection occurring after artificial joint replacement is a major clinical issue that require repeated surgeries and antibiotic interventions. Unfortunately, 26% of patients die within 5 years of developing these infections. Staphylococcus aureus is the bacterium most commonly responsible for this problem and can form biofilms to provide protection from antibiotics as well as the immune system. Although biofilms are evident on the infected implants, it is unclear how these are attached to the surface in the first place. Recent in vitro investigations have shown that staphylococcal strains rapidly form aggregates in the presence of synovial fluid and provide protection to bacteria, thus allowing them time to attach to the implant surface, leading to biofilm formation. In this study, we investigated the attachment kinetics of Staphylococcus aureus aggregates on different orthopedic materials. The information presented in this article will be useful in surgical management and implant design.


Asunto(s)
Equipo Ortopédico/microbiología , Resistencia al Corte , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Estrés Mecánico , Líquido Sinovial/microbiología
8.
PLoS One ; 15(4): e0231791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32302361

RESUMEN

Periprosthetic joint infections (PJIs) are a devastating complication that occurs in 2% of patients following joint replacement. These infections are costly and difficult to treat, often requiring multiple corrective surgeries and prolonged antimicrobial treatments. The Gram-positive bacterium Staphylococcus aureus is one of the most common causes of PJIs, and it is often resistant to a number of commonly used antimicrobials. This tolerance can be partially attributed to the ability of S. aureus to form biofilms. Biofilms associated with the surface of indwelling medical devices have been observed on components removed during chronic infection, however, the development and localization of biofilms during PJIs remains unclear. Prior studies have demonstrated that synovial fluid, in the joint cavity, promotes the development of bacterial aggregates with many biofilm-like properties, including antibiotic resistance. We anticipate these aggregates have an important role in biofilm formation and antibiotic tolerance during PJIs. Therefore, we sought to determine specifically how synovial fluid promotes aggregate formation and the impact of this process on surface attachment. Using flow cytometry and microscopy, we quantified the aggregation of various clinical S. aureus strains following exposure to purified synovial fluid components. We determined that fibrinogen and fibronectin promoted bacterial aggregation, while cell free DNA, serum albumin, and hyaluronic acid had minimal effect. To determine how synovial fluid mediated aggregation affects surface attachment, we utilized microscopy to measure bacterial attachment. Surprisingly, we found that synovial fluid significantly impeded bacterial surface attachment to a variety of materials. We conclude from this study that fibrinogen and fibronectin in synovial fluid have a crucial role in promoting bacterial aggregation and inhibiting surface adhesion during PJI. Collectively, we propose that synovial fluid may have conflicting protective roles for the host by preventing adhesion to surfaces, but by promoting bacterial aggregation is also contributing to the development of antibiotic tolerance.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Líquido Sinovial/microbiología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Fibrinógeno/farmacología , Fibronectinas/farmacología , Humanos , Staphylococcus aureus/efectos de los fármacos , Líquido Sinovial/efectos de los fármacos , Factores de Tiempo
9.
Biomed Res Int ; 2017: 6085741, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29057263

RESUMEN

Nosocomial infections caused by opportunistic bacteria pose major healthcare problem worldwide. Out of the many microorganisms responsible for such infections, Pseudomonas aeruginosa is a ubiquitous bacterium that accounts for 10-20% of hospital-acquired infections. These infections have mortality rates ranging from 18 to 60% and the cost of treatment ranges from $20,000 to $80,000 per infection. The formation of biofilms on medical devices and implants is responsible for the majority of those infections. Only limited progress has been made to prevent this issue in a safe and cost-effective manner. To address this, we propose employing jet plasma to break down and inactivate biofilms in vitro. Moreover, to improve the antimicrobial effect on the biofilm, a treatment method using a combination of jet plasma and a biocide known as chlorhexidine (CHX) digluconate was investigated. We found that complete sterilization of P. aeruginosa biofilms can be achieved after combinatorial treatment using plasma and CHX. A decrease in biofilm viability was also observed using confocal laser scanning electron microscopy (CLSM). This treatment method sterilized biofilm-contaminated surfaces in a short treatment time, indicating it to be a potential tool for the removal of biofilms present on medical devices and implants.


Asunto(s)
Antiinfecciosos Locales/farmacología , Gases em Plasma , Esterilización/métodos , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Clorhexidina/análogos & derivados , Clorhexidina/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA