Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Immunol ; 15: 1439418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267766

RESUMEN

Introduction: Adjuvants added to subunit vaccines augment antigen-specific immune responses. One mechanism of adjuvant action is activation of pattern recognition receptors (PRRs) on innate immune cells. Bordetella colonization factor A (BcfA); an outer membrane protein with adjuvant function, activates TH1/TH17-polarized immune responses to protein antigens from Bordetella pertussis and SARS CoV-2. Unlike other adjuvants, BcfA does not elicit a TH2 response. Methods: To understand the mechanism of BcfA-driven TH1/TH17 vs. TH2 activation, we screened PRRs to identify pathways activated by BcfA. We then tested the role of this receptor in the BcfA-mediated activation of bone marrow-derived dendritic cells (BMDCs) using mice with germline deletion of TLR4 to quantify upregulation of costimulatory molecule expression and cytokine production in vitro and in vivo. Activity was also tested on human PBMCs. Results: PRR screening showed that BcfA activates antigen presenting cells through murine TLR4. BcfA-treated WT BMDCs upregulated expression of the costimulatory molecules CD40, CD80, and CD86 and produced IL-6, IL-12/23 p40, and TNF-α while TLR4 KO BMDCs were not activated. Furthermore, human PBMCs stimulated with BcfA produced IL-6. BcfA-stimulated murine BMDCs also exhibited increased uptake of the antigen DQ-OVA, supporting a role for BcfA in improving antigen presentation to T cells. BcfA further activated APCs in murine lungs. Using an in vitro TH cell polarization system, we found that BcfA-stimulated BMDC supernatant supported TFH and TH1 while suppressing TH2 gene programming. Conclusions: Overall, these data provide mechanistic understanding of how this novel adjuvant activates immune responses.


Asunto(s)
Adyuvantes Inmunológicos , Células TH1 , Células Th2 , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Ratones , Células TH1/inmunología , Células Th2/inmunología , Adyuvantes Inmunológicos/farmacología , Humanos , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Ratones Noqueados , Células Dendríticas/inmunología , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/inmunología , Citocinas/metabolismo , Activación de Linfocitos/inmunología
2.
J Biol Chem ; : 107759, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260695

RESUMEN

Chemical insecticides (organophosphates and pyrethroids) in the form of IRS (Indoor Residual Sprays) and LLINs (Long Lasting insecticidal nets) are the cornerstone for vector control, globally. However, their incessant use has resulted in widespread development of resistance in mosquito vectors, warranting continuous monitoring and investigation of the underlying mechanisms of resistance. Here, we identified a previously uncharacterized- Cub and Sushi Domain containing Insecticide Resistance (CSDIR) protein and generated evidence for its role in mediating insecticide resistance in the Anopheles stephensi. A strong binding affinity of the CSDIR protein towards different classes of insecticide molecules-malathion (KD 6.43 µM) and deltamethrin (KD 46.7µM) were demonstrated using MD simulation studies and Surface Plasmon Resonance (SPR) experiments. Further, the recombinant CSDIR913-1190 protein exhibited potent esterase-like activity (α-naphthyl acetate (α-NA)- 1.356±0.262 mM/min/mg and ß-naphthyl acetate (ß -NA)- 1.777±0.220 mM/min/mg). Interestingly, dsRNA-mediated gene silencing of the CSDIR transcripts caused >60% mortality in resistant An. stephensi upon 1-hour exposure to deltamethrin and malathion insecticides, compared to the control group. A significant reduction in the esterase-like activity was also observed against α-NA (P=0.004) and ß-NA (P=0.025) in CSDIR silenced mosquitoes compared to the control group. Using computational analysis and experimental data, our results provided significant evidence of the involvement of the CSDIR protein in mediating insecticide resistance in Anopheles mosquitoes. Thereby making the CSDIR protein, a novel candidate for exploration of novel insecticide molecules. These data would also be helpful in further understanding the development of metabolic resistance by the Anopheles vector.

3.
Ann Plast Surg ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150757

RESUMEN

BACKGROUND: The aim of the study is to assess the possible predictors of microvascular free flap failure and determine the critical postoperative timing of flap failure, thereby minimizing this adverse outcome. METHODS: This is a retrospective single-institutional review of 1569 free flap operations. All free flaps with outcome status recorded were analyzed for possible predictors in the development of microvascular compromise. Compromised cases were then analyzed for differences in time to compromise and time to theater takeback between salvaged versus failed free flaps. RESULTS: Of the assessable 1569 free flaps, 31 developed microvascular compromise (2.0%); the salvage rate was 20.0%, and overall failure rate was 1.5%. Osteocutaneous free flaps in head and neck had increased risk of developing free flap failure compared to other flaps (odds ratio = 3.8, 95% confidence interval: 1.2-12.7). Among breast patients, previous radiotherapy had a significant association with flap failure (P < 0.001). Free flap salvage rates dropped from 38.5% to 7.7% for compromises detected after 24 hours (P = 0.160), and from 57.1% to 11.1% for free flaps taken back to theater greater than 3 hours after compromise detection (P = 0.032). CONCLUSIONS: Delays in compromise detection and flap takeback to theater resulted in reduced salvage rates, with the critical timing of takeback being under 3 hours. Standardized flap monitoring protocols and incorporation of newer technologies could see faster detection and improved salvage rates. Additional care is required when reconstructing: osteocutaneous head and neck free flaps and previously irradiated breast patients.

4.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961063

RESUMEN

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Asunto(s)
Administración Intranasal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Femenino , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Cricetinae , Humanos , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Vacuna contra el Sarampión-Parotiditis-Rubéola/administración & dosificación , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Virus de la Parotiditis/inmunología , Virus de la Parotiditis/genética , Ratones Noqueados , Mesocricetus , Inmunoglobulina A/inmunología , Inmunoglobulina A/sangre
5.
Ecol Evol ; 14(7): e11696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966242

RESUMEN

In this study, we report the assembly and annotation of the mitochondrial genome (mitogenome) of Acheta domesticus from breeding facility, a species commonly known as the house cricket. This species is considered to be an important edible cricket. The mitogenome was assembled using a reproducible protocol implemented on the Galaxy Europe Server, which involved uploading paired-end fastq reads for bioinformatic analysis. The resulting mitogenome is 15,784 base pairs in length and has a GC content of 29.05%. The nucleotide composition of this mitogenome is similar to that of other insect mitogenomes, with A, T, C, and G nucleotides comprising 39.2%, 31.7%, 19.6%, and 9.5% of the mitogenome, respectively. The gene organization of the A. domesticus mitogenome is identical to that of other cricket species. The mitogenome consists of 37 genes, including 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The congruence between PCA and Bayesian evolutionary tree analysis in clustering the divergent A. domesticus sequences highlights these genomes as candidates for further study to elucidate their distinct features and evolutionary history.

6.
Am J Pathol ; 194(9): 1664-1683, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885924

RESUMEN

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.


Asunto(s)
Bifidobacterium bifidum , Mucosa Intestinal , Quinasa de Cadena Ligera de Miosina , PPAR gamma , Permeabilidad , Uniones Estrechas , Receptor Toll-Like 2 , Factor de Transcripción ReIA , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Bifidobacterium bifidum/metabolismo , Bifidobacterium bifidum/fisiología , Células CACO-2 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Quinasa de Cadena Ligera de Miosina/metabolismo , Permeabilidad/efectos de los fármacos , PPAR gamma/metabolismo , Probióticos/farmacología , Uniones Estrechas/metabolismo , Receptor Toll-Like 2/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 6
7.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328073

RESUMEN

Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.

8.
EClinicalMedicine ; 65: 102259, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106563

RESUMEN

Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide, driven primarily by coronary artery disease (CAD). ASCVD risk estimators such as the pooled cohort equations (PCE) facilitate risk stratification and primary prevention of ASCVD but their accuracy is still suboptimal. Methods: Using deep electronic health record data from 7,116,209 patients seen at 70+ hospitals and clinics across 5 states in the USA, we developed an artificial intelligence-based electrocardiogram analysis tool (ECG-AI) to detect CAD and assessed the additive value of ECG-AI-based ASCVD risk stratification to the PCE. We created independent ECG-AI models using separate neural networks including subjects without known history of ASCVD, to identify coronary artery calcium (CAC) score ≥300 Agatston units by computed tomography, obstructive CAD by angiography or procedural intervention, and regional left ventricular akinesis in ≥1 segment by echocardiogram, as a reflection of possible prior myocardial infarction (MI). These were used to assess the utility of ECG-AI-based ASCVD risk stratification in a retrospective observational study consisting of patients with PCE scores and no prior ASCVD. The study period covered all available digitized EHR data, with the first available ECG in 1987 and the last in February 2023. Findings: ECG-AI for identifying CAC ≥300, obstructive CAD, and regional akinesis achieved area under the receiver operating characteristic (AUROC) values of 0.88, 0.85, and 0.94, respectively. An ensembled ECG-AI identified 3, 5, and 10-year risk for acute coronary events and mortality independently and additively to PCE. Hazard ratios for acute coronary events over 3-years in patients without ASCVD that tested positive on 1, 2, or 3 versus 0 disease-specific ECG-AI models at cohort entry were 2.41 (2.14-2.71), 4.23 (3.74-4.78), and 11.75 (10.2-13.52), respectively. Similar stratification was observed in cohorts stratified by PCE or age. Interpretation: ECG-AI has potential to address unmet need for accessible risk stratification in patients in whom PCE under, over, or insufficiently estimates ASCVD risk, and in whom risk assessment over time periods shorter than 10 years is desired. Funding: Anumana.

9.
BMC Biotechnol ; 23(1): 12, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127673

RESUMEN

BACKGROUND: Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI. RESULTS: The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice. CONCLUSIONS: To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Ratones , Animales , Receptores de Eritropoyetina/metabolismo , Eritropoyetina/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Ratones Noqueados , Motilidad Gastrointestinal
10.
Biochem Mol Biol Educ ; 51(5): 537-539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37199252

RESUMEN

The COVID-19 pandemic has forced the Bioinformatics course to switch from on-site teaching to remote learning. This shift has prompted a change in teaching methods and laboratory activities. Students need to have a basic understanding of DNA sequences and how to analyze them using custom scripts. To facilitate learning, we have modified the course to use Jupyter Notebook, which offers an alternative approach to writing custom scripts for basic DNA sequence analysis. This approach allows students to acquire the necessary skills while working remotely. It is a versatile and user-friendly platform that can be used to combine explanations, code, and results in a single document. This feature enables students to interact with the code and results, making the learning process more engaging and effective. Jupyter Notebook provides a hybrid approach to learning basic Python scripting and genomics that is effective for remote teaching and learning during the COVID-19 pandemic.

11.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108313

RESUMEN

We have previously shown computationally that Mycolactone (MLN), a toxin produced by Mycobacterium ulcerans, strongly binds to Munc18b and other proteins, presumably blocking degranulation and exocytosis of blood platelets and mast cells. We investigated the effect of MLN on endocytosis using similar approaches, and it bound strongly to the N-terminal of the clathrin protein and a novel SARS-CoV-2 fusion protein. Experimentally, we found 100% inhibition up to 60 nM and 84% average inhibition at 30 nM in SARS-CoV-2 live viral assays. MLN was also 10× more potent than remdesivir and molnupiravir. MLN's toxicity against human alveolar cell line A549, immortalized human fetal renal cell line HEK293, and human hepatoma cell line Huh7.1 were 17.12%, 40.30%, and 36.25%, respectively. The cytotoxicity IC50 breakpoint ratio versus anti-SARS-CoV-2 activity was more than 65-fold. The IC50 values against the alpha, delta, and Omicron variants were all below 0.020 µM, and 134.6 nM of MLN had 100% inhibition in an entry and spread assays. MLN is eclectic in its actions through its binding to Sec61, AT2R, and the novel fusion protein, making it a good drug candidate for treating and preventing COVID-19 and other similarly transmitted enveloped viruses and pathogens.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología , Células HEK293
12.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108137

RESUMEN

New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Glioma , Humanos , Terapia por Captura de Neutrón de Boro/métodos , Ligandos , Internalización del Virus , Compuestos de Boro/farmacología
13.
J Am Med Inform Assoc ; 30(6): 1167-1178, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36916740

RESUMEN

OBJECTIVE: We aimed to develop a distributed, immutable, and highly available cross-cloud blockchain system to facilitate federated data analysis activities among multiple institutions. MATERIALS AND METHODS: We preprocessed 9166 COVID-19 Structured Query Language (SQL) code, summary statistics, and user activity logs, from the GitHub repository of the Reliable Response Data Discovery for COVID-19 (R2D2) Consortium. The repository collected local summary statistics from participating institutions and aggregated the global result to a COVID-19-related clinical query, previously posted by clinicians on a website. We developed both on-chain and off-chain components to store/query these activity logs and their associated queries/results on a blockchain for immutability, transparency, and high availability of research communication. We measured run-time efficiency of contract deployment, network transactions, and confirmed the accuracy of recorded logs compared to a centralized baseline solution. RESULTS: The smart contract deployment took 4.5 s on an average. The time to record an activity log on blockchain was slightly over 2 s, versus 5-9 s for baseline. For querying, each query took on an average less than 0.4 s on blockchain, versus around 2.1 s for baseline. DISCUSSION: The low deployment, recording, and querying times confirm the feasibility of our cross-cloud, blockchain-based federated data analysis system. We have yet to evaluate the system on a larger network with multiple nodes per cloud, to consider how to accommodate a surge in activities, and to investigate methods to lower querying time as the blockchain grows. CONCLUSION: Blockchain technology can be used to support federated data analysis among multiple institutions.


Asunto(s)
Cadena de Bloques , COVID-19 , Humanos , Investigación
14.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982188

RESUMEN

The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted ɑ-aminocyclobutanones from an ɑ-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus antiviral targets. Several of these analogs were initially identified as in silico hits against SARS-CoV-2 nonstructural protein 13 (Nsp13) helicase through molecular docking and dynamics simulations. Antiviral activity of the original hits as well as ɑ-aminocyclobutanone analogs that were predicted to bind more tightly to SARS-CoV-2 Nsp13 helicase are reported. We now report cyclobutanone derivatives that exhibit anti-SARS-CoV-2 activity. Furthermore, the Nsp13 helicase enzyme has been the target of relatively few target-based drug discovery efforts, in part due to a very late release of a high-resolution structure accompanied by a limited understanding of its protein biochemistry. In general, antiviral agents initially efficacious against wild-type SARS-CoV-2 strains have lower activities against variants due to heavy viral loads and greater turnover rates, but the inhibitors we are reporting have higher activities against the later variants than the wild-type (10-20X). We speculate this could be due to Nsp13 helicase being a critical bottleneck in faster replication rates of the new variants, so targeting this enzyme affects these variants to an even greater extent. This work calls attention to cyclobutanones as a useful medicinal chemistry scaffold, and the need for additional focus on the discovery of Nsp13 helicase inhibitors to combat the aggressive and immune-evading variants of concern (VOCs).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , ARN Helicasas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/metabolismo , ADN Helicasas/metabolismo
15.
Molecules ; 28(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677538

RESUMEN

Broadly neutralizing antibodies (bNAbs) are potent in neutralizing a wide range of HIV strains. VRC01 is a CD4-binding-site (CD4-bs) class of bNAbs that binds to the conserved CD4-binding region of HIV-1 envelope (env) protein. Natural products that mimic VRC01 bNAbs by interacting with the conserved CD4-binding regions may serve as a new generation of HIV-1 entry inhibitors by being broadly reactive and potently neutralizing. This study aimed to identify compounds that mimic VRC01 by interacting with the CD4-bs of HIV-1 gp120 and thereby inhibiting viral entry into target cells. Libraries of purchasable natural products were virtually screened against clade A/E recombinant 93TH057 (PDB: 3NGB) and clade B (PDB ID: 3J70) HIV-1 env protein. Protein-ligand interaction profiling from molecular docking and dynamics simulations showed that the compounds had intermolecular hydrogen and hydrophobic interactions with conserved amino acid residues on the CD4-binding site of recombinant clade A/E and clade B HIV-1 gp120. Four potential lead compounds, NP-005114, NP-008297, NP-007422, and NP-007382, were used for cell-based antiviral infectivity inhibition assay using clade B (HXB2) env pseudotype virus (PV). The four compounds inhibited the entry of HIV HXB2 pseudotype viruses into target cells at 50% inhibitory concentrations (IC50) of 15.2 µM (9.7 µg/mL), 10.1 µM (7.5 µg/mL), 16.2 µM (12.7 µg/mL), and 21.6 µM (12.9 µg/mL), respectively. The interaction of these compounds with critical residues of the CD4-binding site of more than one clade of HIV gp120 and inhibition of HIV-1 entry into the target cell demonstrate the possibility of a new class of HIV entry inhibitors.


Asunto(s)
Productos Biológicos , Anticuerpos ampliamente neutralizantes , VIH-1 , Humanos , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1/efectos de los fármacos , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología
16.
Mol Aspects Med ; 91: 101142, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36116999

RESUMEN

Topics expected to influence personalized medicine (PM), where medical decisions, practices, and treatments are tailored to the individual patient, are reviewed. Lack of discrimination due to different biological conditions that express similar values of numerical variables (ambiguity) is regarded to be a major potential barrier for PM. This material explores possible causes and sources of ambiguity and offers suggestions for mitigating the impacts of uncertainties. Three causes of ambiguity are identified: (1) delayed adoption of innovations, (2) inadequate emphases, and (3) inadequate processes used when new medical practices are developed and validated. One example of the first problem is the relative lack of medical research on "compositional data" -the type that characterizes leukocyte data. This omission results in erroneous use of data abundantly utilized in medicine, such as the blood cell differential. Emphasis on data output ‒not biomedical interpretation that facilitates the use of clinical data‒ exemplifies the second type of problems. Reliance on tools generated in other fields (but not validated within biomedical contexts) describes the last limitation. Because reductionism is associated with these problems, non-reductionist alternatives are reviewed as potential remedies. Data structuring (converting data into information) is considered a key element that may promote PM. To illustrate a process that includes data-information-knowledge and decision-making, previously published data on COVID-19 are utilized. It is suggested that ambiguity may be prevented or ameliorated. Provided that validations are grounded on biomedical knowledge, approaches that describe certain criteria - such as non-overlapping data intervals of patients that experience different outcomes, immunologically interpretable data, and distinct graphic patterns - can inform, at personalized bases, earlier and/or with fewer observations.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Medicina de Precisión/métodos , Leucocitos
17.
Mol Aspects Med ; 91: 101151, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36371228

RESUMEN

With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Inteligencia Artificial , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas
18.
Multimed Tools Appl ; 82(6): 8447-8466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968406

RESUMEN

With the uproar of touchless technology, the Virtual Continuum has seen some spark in the upcoming products. Today numerous gadgets support the use of Mixed Reality / Augmented Reality (AR)/ Virtual Reality. The Head Mounted Displays (HMDs) like that of Hololens, Google Lens, Jio Glass manifested reality into virtuality. Other than the HMDs many organizations tend to develop mobile AR applications to support umpteen number of industries like medicine, education, construction. Currently, the major issue lies in the performance parameters of these applications, while deploying for mobile application's graphics performance, latency, and CPU functioning. Many industries pose real-time computation requirements in AR but do not implement an efficient algorithm in their frameworks. Offloading the computation of deep learning models involved in the application to the cloud servers will highly affect the processing parameters. For our use case, we will be using Multi-Task Cascaded Convolutional Neural Network (MTCNN) which is a modern tool for face detection, using a 3-stage neural network detector. Therefore, the optimization of communication between local application and cloud computing frameworks needs to be optimized. The proposed framework defines how the parameters involving the complete deployment of a mobile AR application can be optimized in terms of retrieval of multimedia, its processing, and augmentation of graphics, eventually enhancing the performance. To implement the proposed algorithm a mobile application is created in Unity3D. The mobile application virtually augments a 3D model of a skeleton on a target face. After the mentioned experimentation, it is found that average Media Retrieval Time (1.1471 µ s) and Client Time (1.1207 µ s) in the local application are extremely low than the average API process time (288.934ms). The highest time latency is achieved at the frame rate higher than 80fps.

19.
Ecol Evol ; 12(10): e9401, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36225838

RESUMEN

The red-whiskered bulbul (Pycnonotus jocosus) is a popular avian species in Thailand and many other countries. The red-whiskered bulbul has a high economic value, but breeding is challenging since sex identification is difficult. The PCR method is now used for sex identification. However, PCR amplification and post-PCR analysis necessitate the use of a laboratory equipped with specialized scientific instruments, which is inconvenient for field operations. This research describes a method for amplification of DNA samples using the loop-mediated isothermal amplification (LAMP) approach, which is a molecular biology methodology for isothermal amplification that is extremely sensitive, fast, and easy for post-LAMP product visualization. Herein, total of 23 blood samples were collected and DNA was extracted. Two sets of LAMP primers were designed for CHD-Z and CHD-W genes. The colorimetric assay was used to investigate the best conditions for LAMP reactions and post-LAMP product visualization. LAMP reactions for sex identification were compared to traditional PCR in terms of sensitivity and specificity. LAMP reactions were found to be 10-fold more sensitive than PCR at 1 ng of DNA. When compared to electrophoresis analysis, the visualization with colorimetric assay using GelRed® and SYTO™ 9 was 100% accurate. The optimal LAMP condition tested simple DNA extracted from bird feathers using the HotSHOT technique. The result showed that the optimal condition could distinguish the sex of red-whiskered bulbuls totally and accurately. A powerful method for red-whiskered bulbul sex identification is demonstrated in this study, which can be used in field studies because it is quick and easy to perform, has high sensitivity, and does not require advanced scientific equipment.

20.
Mitochondrial DNA B Resour ; 7(8): 1427-1431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958061

RESUMEN

Tarbinskiellus portentosus, commonly known as giant cricket one of the important edible cricket species. However, the genetic information of these species is still limited. Therefore, we have assembled and annotated the first mitochondrial genome of T. portentosus. The mitogenome is 15710 bp long and has GC content of 27.19%. The nucleotide composition is similar with other insect mitogenomes (A 40.6%; T 32.2%; C 17.3%; G 9.9%). The gene organization in the mitogenome of T. portentosus is identical to the mitogenome of other cricket species. The complete mitogenome of T. portentosus consisted 37 genes including 13 protein coding genes, 22 tRNA genes, and two rRNA genes. The newly assembled mitogenome will help molecular biology research on edible crickets. Since mitogenome genes are traditionally used for DNA barcoding and phylogenetic analysis, comparative analysis of T. portentosus mitogenome with other related cricket species will also aid researchers in developing universal primers for species identification toward food security. Apart from the main goal of providing full mitogenome of T. portentosus, paper also provides conceptual workflow based on de novo assembly and its correction for final mitogenome construction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...