Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(40): 35209-17, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21832067

RESUMEN

Neurotoxin receptor site-3 at voltage-gated Na(+) channels is recognized by various peptide toxin inhibitors of channel inactivation. Despite extensive studies of the effects of these toxins, their mode of interaction with the channel remained to be described at the molecular level. To identify channel constituents that interact with the toxins, we exploited the opposing preferences of LqhαIT and Lqh2 scorpion α-toxins for insect and mammalian brain Na(+) channels. Construction of the DIV/S1-S2, DIV/S3-S4, DI/S5-SS1, and DI/SS2-S6 external loops of the rat brain rNa(v)1.2a channel (highly sensitive to Lqh2) in the background of the Drosophila DmNa(v)1 channel (highly sensitive to LqhαIT), and examination of toxin activity on the channel chimera expressed in Xenopus oocytes revealed a substantial decrease in LqhαIT effect, whereas Lqh2 was as effective as at rNa(v)1.2a. Further substitutions of individual loops and specific residues followed by examination of gain or loss in Lqh2 and LqhαIT activities highlighted the importance of DI/S5-S6 (pore module) and the C-terminal region of DIV/S3 (gating module) of rNa(v)1.2a for Lqh2 action and selectivity. In contrast, a single substitution of Glu-1613 to Asp at DIV/S3-S4 converted rNa(v)1.2a to high sensitivity toward LqhαIT. Comparison of depolarization-driven dissociation of Lqh2 and mutant derivatives off their binding site at rNa(v)1.2a mutant channels has suggested that the toxin core domain interacts with the gating module of DIV. These results constitute the first step in better understanding of the way scorpion α-toxins interact with voltage-gated Na(+)-channels at the molecular level.


Asunto(s)
Venenos de Escorpión/metabolismo , Escorpiones/metabolismo , Canales de Sodio/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , ADN Complementario/metabolismo , Drosophila , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis , Mutación , Neurotoxinas/metabolismo , Ratas , Anémonas de Mar , Homología de Secuencia de Aminoácido , Xenopus
2.
J Mol Evol ; 69(2): 115-24, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19609479

RESUMEN

Sea anemones are sessile predators that use a variety of toxins to paralyze prey and foe. Among these toxins, Types I, II and III are short peptides that affect voltage-gated sodium channels. Anemonia viridis is the only sea anemone species that produces both Types I and III neurotoxin. Although the two toxin types are unrelated in sequence and three-dimensional structure, cloning and comparative analysis of their loci revealed a highly similar sequence at the 5' region, which encodes a signal peptide. This similarity was likely generated by gene fusion and could be advantageous in transcript stability and intracellular trafficking and secretion. In addition, these analyses identified the processed pseudogenes of the two gene families in the genome of A. viridis, probably resulting from retrotransposition events. As presence of processed pseudogenes in the genome requires transcription in germ-line cells, we analyzed oocyte-rich ovaries and found that indeed they contain Types I and III transcripts. This result raises questions regarding the role of toxin transcripts in these tissues. Overall, the retrotransposition and gene fusion events suggest that the genes of both Types I and III neurotoxins evolved in a similar fashion and share a partial common ancestry.


Asunto(s)
Evolución Molecular , Fusión Génica , Neurotoxinas/genética , Retroelementos/genética , Anémonas de Mar/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , ADN Intergénico/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Neurotoxinas/química , Neurotoxinas/metabolismo , Filogenia , Seudogenes/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
3.
J Biol Chem ; 282(40): 29424-30, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17686768

RESUMEN

Gating modifiers of voltage-gated sodium channels (Na(v)s) are important tools in neuroscience research and may have therapeutic potential in medicinal disorders. Analysis of the bioactive surface of the scorpion beta-toxin Css4 (from Centruroides suffusus suffusus) toward rat brain (rNa(v)1.2a) and skeletal muscle (rNa(v)1.4) channels using binding studies revealed commonality but also substantial differences, which were used to design a specific activator, Css4(F14A/E15A/E28R), of rNa(v)1.4 expressed in Xenopus oocytes. The therapeutic potential of Css4(F14A/E15A/E28R) was tested using an rNa(v)1.4 mutant carrying the same mutation present in the genetic disorder hypokalemic periodic paralysis. The activator restored the impaired gating properties of the mutant channel expressed in oocytes, thus offering a tentative new means for treatment of neuromuscular disorders with reduced muscle excitability. Mutant double cycle analysis employing toxin residues involved in the construction of Css4(F14A/E15A/E28R) and residues whose equivalents in the rat brain channel rNa(v)1.2a were shown to affect Css4 binding revealed significant coupling energy (>1.3 kcal/mol) between F14A and E592A at Domain-2/voltage sensor segments 1-2 (D2/S1-S2), R27Q and E1251N at D3/SS2-S6, and E28R with both E650A at D2/S3-S4 and E1251N at D3/SS2-S6. These results show that despite the differences in interactions with the rat brain and skeletal muscle Na(v)s, Css4 recognizes a similar region on both channel subtypes. Moreover, our data indicate that the S3-S4 loop of the voltage sensor module in Domain-2 is in very close proximity to the SS2-S6 segment of the pore module of Domain-3 in rNa(v)1.4. This is the first experimental evidence that the inter-domain spatial organization of mammalian Na(v)s resembles that of voltage-gated potassium channels.


Asunto(s)
Músculo Esquelético/metabolismo , Canales de Sodio/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Venenos de Escorpión/metabolismo , Propiedades de Superficie , Xenopus , Xenopus laevis
4.
Biochem J ; 406(1): 41-8, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17492942

RESUMEN

Av3 is a short peptide toxin from the sea anemone Anemonia viridis shown to be active on crustaceans and inactive on mammals. It inhibits inactivation of Na(v)s (voltage-gated Na+ channels) like the structurally dissimilar scorpion alpha-toxins and type I sea anemone toxins that bind to receptor site-3. To examine the potency and mode of interaction of Av3 with insect Na(v)s, we established a system for its expression, mutagenized it throughout, and analysed it in toxicity, binding and electrophysiological assays. The recombinant Av3 was found to be highly toxic to blowfly larvae (ED50=2.65+/-0.46 pmol/100 mg), to compete well with the site-3 toxin LqhalphaIT (from the scorpion Leiurus quinquestriatus) on binding to cockroach neuronal membranes (K(i)=21.4+/-7.1 nM), and to inhibit the inactivation of Drosophila melanogaster channel, DmNa(v)1, but not that of mammalian Na(v)s expressed in Xenopus oocytes. Moreover, like other site-3 toxins, the activity of Av3 was synergically enhanced by ligands of receptor site-4 (e.g. scorpion beta-toxins). The bioactive surface of Av3 was found to consist mainly of aromatic residues and did not resemble any of the bioactive surfaces of other site-3 toxins. These analyses have portrayed a toxin that might interact with receptor site-3 in a different fashion compared with other ligands of this site. This assumption was corroborated by a D1701R mutation in DmNa(v)1, which has been shown to abolish the activity of all other site-3 ligands, except Av3. All in all, the present study provides further evidence for the heterogeneity of receptor site-3, and raises Av3 as a unique model for design of selective anti-insect compounds.


Asunto(s)
Venenos de Cnidarios/química , Venenos de Cnidarios/farmacología , Insectos/efectos de los fármacos , Activación del Canal Iónico , Receptores de Superficie Celular/metabolismo , Anémonas de Mar/metabolismo , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arginina/genética , Ácido Aspártico/genética , Dicroismo Circular , Venenos de Cnidarios/metabolismo , Cucarachas/efectos de los fármacos , Drosophila melanogaster/metabolismo , Insectos/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Larva/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación/genética , Oocitos/efectos de los fármacos , Proteínas Recombinantes/química , Anémonas de Mar/química , Especificidad de la Especie , Xenopus
5.
FEBS J ; 274(8): 1918-31, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17355257

RESUMEN

The affinity of scorpion alpha-toxins for various voltage-gated sodium channels (Na(v)s) differs considerably despite similar structures and activities. It has been proposed that key bioactive residues of the five-residue-turn (residues 8-12) and the C-tail form the NC domain, whose topology is dictated by a cis or trans peptide-bond conformation between residues 9 and 10, which correlates with the potency on insect or mammalian Na(v)s. We examined this hypothesis using Lqh3, an alpha-like toxin from Leiurus quinquestriatus hebraeus that is highly active in insects and mammalian brain. Lqh3 exhibits slower association kinetics to Na(v)s compared with other alpha-toxins and its binding to insect Na(v)s is pH-dependent. Mutagenesis of Lqh3 revealed a bi-partite bioactive surface, composed of the Core and NC domains, as found in other alpha-toxins. Yet, substitutions at the five-residue turn and stabilization of the 9-10 bond in the cis conformation did not affect the activity. However, substitution of hydrogen-bond donors/acceptors at the NC domain reduced the pH-dependency of toxin binding, while retaining its high potency at Drosophila Na(v)s expressed in Xenopus oocytes. Based on these results and the conformational flexibility and rearrangement of intramolecular hydrogen-bonds at the NC domain, evident from the known solution structure, we suggest that acidic pH or specific mutations at the NC domain favor toxin conformations with high affinity for the receptor by stabilizing the bound toxin-receptor complex. Moreover, the C-tail flexibility may account for the slower association rates and suggests a novel mechanism of dynamic conformer selection during toxin binding, enabling alpha-like toxins to affect a broad range of Na(v)s.


Asunto(s)
Venenos de Escorpión/química , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Drosophila melanogaster , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Conformación Proteica , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Canales de Sodio/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA