RESUMEN
Implementing sustainable agricultural land management practices such as no-till (NT) and diversified crops are important for maintaining soil health properties. This study focuses on the soil health of three long-term (44 years) tillage systems, NT, reduced tillage (RT), and conventional tillage (CT), in monoculture winter wheat-fallow (W-F) (Triticum aestivum L.) and wheat-soybean (W-S) (Glycine max (L.) Merrill) rotation. Soil organic carbon (C) was higher in NT than CT in the surface 0-5 cm, but not different in the 5-15 cm, demonstrating SOC stratification on the soil profile. The soil water content was higher in NT followed by RT and CT in the top 0-5 cm. We found an association between increased carbon, aggregation, and AMF biomass. Greater soil aggregation, carbon and AMF were observed in NT at 0-5 cm soil depth. The W-S cropping system had greater soil microbial community composition based on fungi biomass, AMF and fungal to bacteria ratio from phospholipid fatty acid analysis (PLFA). Large macroaggregates were positively correlated with total C and N, microbial biomass, Gram + , and AMF. Soil water content was positively correlated with macroaggregates, total C and N, and AC. No-till increased soil carbon content even after 44 years of cultivation. By implementing conservation tillage systems and diversified crop rotation, soil quality can be improved through greater soil organic C, water content, greater soil structure, and higher AMF biomass than CT practice in the Central Great Plains.
Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/química , Agricultura , Glycine max , Triticum , Agua , HongosRESUMEN
Methanogenesis and iron reduction play major roles in determining global fluxes of greenhouse gases. Despite their importance, environmental factors that influence their interactions are poorly known. Here, we present evidence that pH significantly influences the balance between each reaction in anoxic environments that contain ferric (oxyhydr)oxide minerals. In sediment bioreactors that contained goethite as a source of ferric iron, both iron reduction and methanogenesis occurred but the balance between them varied significantly with pH. Compared to bioreactors receiving acidic media (pH 6), electron donor oxidation was 85% lower for iron reduction and 61% higher for methanogenesis in bioreactors receiving alkaline media (pH 7.5). Thus, methanogenesis displaced iron reduction considerably at alkaline pH. Geochemistry data collected from U.S. aquifers demonstrate that a similar pattern also exists on a broad spatial scale in natural settings. In contrast, in bioreactors that were not augmented with goethite, clay minerals served as the source of ferric iron and the balance between each reaction did not vary significantly with pH. We therefore conclude that pH can regulate the relative contributions of microbial iron reduction and methanogenesis to carbon fluxes from terrestrial environments. We further propose that the availability of ferric (oxyhydr)oxide minerals influences the extent to which the balance between each reaction is sensitive to pH. The results of this study advance our understanding of environmental controls on microbial methane generation and provide a basis for using pH and the occurrence of ferric minerals to refine predictions of greenhouse gas fluxes.