Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905107

RESUMEN

Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.

2.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559175

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.

3.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559249

RESUMEN

The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE: We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.

4.
JCI Insight ; 9(1)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015634

RESUMEN

Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is poorly understood. Here, we determine the impact of gut microbiota on pulmonary fibrosis in substrains of C57BL/6 mice derived from different vendors (C57BL/6J and C57BL/6NCrl). We used germ-free models, fecal microbiota transplantation, and cohousing to transmit gut microbiota. Metagenomic studies of feces established keystone species between substrains. Pulmonary fibrosis was microbiota dependent in C57BL/6 mice. Gut microbiota were distinct by ß diversity and α diversity. Mortality and lung fibrosis were attenuated in C57BL/6NCrl mice. Elevated CD4+IL-10+ T cells and lower IL-6 occurred in C57BL/6NCrl mice. Horizontal transmission of microbiota by cohousing attenuated mortality in C57BL/6J mice and promoted a transcriptionally altered pulmonary immunity. Temporal changes in lung and gut microbiota demonstrated that gut microbiota contributed largely to immunological phenotype. Key regulatory gut microbiota contributed to lung fibrosis, generating rationale for human studies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fibrosis Pulmonar , Ratones , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Ratones Endogámicos C57BL , Pulmón , Microbiota/fisiología
5.
Am J Respir Cell Mol Biol ; 67(6): 641-653, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036796

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/farmacología , Bleomicina , Heparina , Inflamación , Factor de Crecimiento Epidérmico/farmacología
6.
Infect Immun ; 90(7): e0022422, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35762751

RESUMEN

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.


Asunto(s)
Bacteriemia , Infecciones por Klebsiella , Adenosina Difosfato , Animales , Bacteriemia/genética , Escherichia coli/genética , Heptosas , Klebsiella pneumoniae/genética , Lipopolisacáridos , Ratones
7.
Dev Cell ; 57(7): 914-929.e7, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35320732

RESUMEN

Fallopian tube (FT) homeostasis requires dynamic regulation of heterogeneous cell populations and is disrupted in infertility and ovarian cancer. Here, we applied single-cell RNA-seq to profile 59,738 FT cells from four healthy, pre-menopausal subjects. The resulting cell atlas contains 12 major cell types representing epithelial, stromal, and immune compartments. Re-clustering of epithelial cells identified four ciliated and six non-ciliated secretory epithelial subtypes, two of which represent potential progenitor pools: one leading to mature secretory cells and the other contributing to either ciliated cells or one of the stromal cell types. To understand how FT cell numbers and states change in a disease state, we analyzed 17,798 cells from two hydrosalpinx samples and observed shifts in epithelial and stromal populations and cell-type-specific changes in extracellular matrix and TGF-ß signaling; this underscores fibrosis pathophysiology. This resource is expected to facilitate future studies aimed at expanding understanding of fallopian tube homeostasis in normal development and disease.


Asunto(s)
Trompas Uterinas , Neoplasias Ováricas , Células Epiteliales/metabolismo , Trompas Uterinas/metabolismo , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Análisis de la Célula Individual
8.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L518-L532, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231378

RESUMEN

Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Fibrosis Pulmonar/metabolismo , RNA-Seq , Células Epiteliales Alveolares/patología , Animales , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Femenino , Fibroblastos/patología , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología
9.
Nat Commun ; 12(1): 3876, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162856

RESUMEN

Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Homeostasis/genética , Células Madre Mesenquimatosas/metabolismo , Regeneración/genética , Testículo/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual/métodos , Testículo/citología
10.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33491663

RESUMEN

The aryl-hydrocarbon receptor (AHR) is an intracellular sensor of aromatic hydrocarbons that sits at the top of various immunomodulatory pathways. Here, we present evidence that AHR plays a role in controlling IL-17 responses and the development of pulmonary fibrosis in response to respiratory pathogens following bone marrow transplant (BMT). Mice infected intranasally with gamma-herpesvirus 68 (γHV-68) following BMT displayed elevated levels of the AHR ligand, kynurenine (kyn), in comparison with control mice. Inhibition or genetic ablation of AHR signaling resulted in a significant decrease in IL-17 expression as well as a reduction in lung pathology. Lung CD103+ DCs expressed AHR following BMT, and treatment of induced CD103+ DCs with kyn resulted in altered cytokine production in response to γHV-68. Interestingly, mice deficient in the kyn-producing enzyme indolamine 2-3 dioxygenase showed no differences in cytokine responses to γHV-68 following BMT; however, isolated pulmonary fibroblasts infected with γHV-68 expressed the kyn-producing enzyme tryptophan dioxygenase (TDO2). Our data indicate that alterations in the production of AHR ligands in response to respiratory pathogens following BMT results in a pro-Th17 phenotype that drives lung pathology. We have further identified the TDO2/AHR axis as a potentially novel form of intercellular communication between fibroblasts and DCs that shapes immune responses to respiratory pathogens.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trasplante de Médula Ósea/efectos adversos , Fibrosis Pulmonar/etiología , Receptores de Hidrocarburo de Aril/metabolismo , Rhadinovirus/patogenicidad , Triptófano Oxigenasa/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Dendríticas/patología , Células Dendríticas/fisiología , Modelos Animales de Enfermedad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Interleucina-17/biosíntesis , Quinurenina/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Rhadinovirus/inmunología , Transducción de Señal , Células Th17/inmunología
11.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067238

RESUMEN

Antigen-specific particles can treat autoimmunity, and pulmonary delivery may provide for easier delivery than intravenous or subcutaneous routes. The lung is a "hub" for autoimmunity where autoreactive T cells pass before arriving at disease sites. Here, we report that targeting lung antigen-presenting cells (APCs) via antigen-loaded poly(lactide-co-glycolide) particles modulates lung CD4+ T cells to tolerize murine experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Particles directly delivered to the lung via intratracheal administration demonstrated more substantial reduction in EAE severity when compared with particles delivered to the liver and spleen via intravenous administration. Intratracheally delivered particles were associated with lung APCs and decreased costimulatory molecule expression on the APCs, which inhibited CD4+ T cell proliferation and reduced their population in the central nervous system while increasing them in the lung. This study supports noninvasive pulmonary particle delivery, such as inhalable administration, to treat autoimmune disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Nanopartículas , Animales , Células Presentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Linfocitos T CD4-Positivos , Encefalomielitis Autoinmune Experimental/metabolismo , Pulmón , Ratones , Ratones Endogámicos C57BL
12.
Sci Rep ; 10(1): 12049, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694604

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and heterogeneous interstitial lung disease of unknown origin with a low survival rate. There are few treatment options available due to the fact that mechanisms underlying disease progression are not well understood, likely because they arise from dysregulation of complex signaling networks spanning multiple tissue compartments. To better characterize these networks, we used systems-focused data-driven modeling approaches to identify cross-tissue compartment (blood and bronchoalveolar lavage) and temporal proteomic signatures that differentiated IPF progressors and non-progressors. Partial least squares discriminant analysis identified a signature of 54 baseline (week 0) blood and lung proteins that differentiated IPF progression status by the end of 80 weeks of follow-up with 100% cross-validation accuracy. Overall we observed heterogeneous protein expression patterns in progressors compared to more homogenous signatures in non-progressors, and found that non-progressors were enriched for proteomic processes involving regulation of the immune/defense response. We also identified a temporal signature of blood proteins that was significantly different at early and late progressor time points (p < 0.0001), but not present in non-progressors. Overall, this approach can be used to generate new hypothesis for mechanisms associated with IPF progression and could readily be translated to other complex and heterogeneous diseases.


Asunto(s)
Biomarcadores/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Anciano , Biomarcadores/sangre , Proteínas Sanguíneas , Líquido del Lavado Bronquioalveolar , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/patología , Masculino , Persona de Mediana Edad , Mapeo de Interacción de Proteínas , Proteómica/métodos
15.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1035-L1048, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30838865

RESUMEN

Protein phosphatase 2A (PP2A), a ubiquitously expressed Ser/Thr phosphatase is an important regulator of cytokine signaling and cell function. We previously showed that myeloid-specific deletion of PP2A (LysMcrePP2A-/-) increased mortality in a murine peritoneal sepsis model. In the current study, we assessed the role of myeloid PP2A in regulation of lung injury induced by lipopolysaccharide (LPS) or bleomycin delivered intratracheally. LysMcrePP2A-/- mice experienced increased lung injury in response to both LPS and bleomycin. LysMcrePP2A-/- mice developed more exuberant fibrosis in response to bleomycin, elevated cytokine responses, and chronic myeloid inflammation. Bone marrow-derived macrophages (BMDMs) from LysMcrePP2A-/- mice showed exaggerated inflammatory cytokine release under conditions of both M1 and M2 activation. Notably, secretion of IL-10 was elevated under all stimulation conditions, including activation of BMDMs by multiple Toll-like receptor ligands. Supernatants collected from LPS-stimulated LysMcrePP2A-/- BMDMs induced epithelial cell apoptosis in vitro but this effect was mitigated when IL-10 was also depleted from the BMDMs by crossing LysMcrePP2A-/- mice with systemic IL-10-/- mice (LysMcrePP2A-/- × IL-10-/-) or when IL-10 was neutralized. Despite these findings, IL-10 did not directly induce epithelial cell apoptosis but sensitized epithelial cells to other mediators from the BMDMs. Taken together our results demonstrate that myeloid PP2A regulates production of multiple cytokines but that its effect is most pronounced on IL-10 production. Furthermore, IL-10 sensitizes epithelial cells to apoptosis in response to myeloid-derived mediators, which likely contributes to the pathogenesis of lung injury and fibrosis in this model.


Asunto(s)
Células Epiteliales/metabolismo , Interleucina-10/metabolismo , Lesión Pulmonar/patología , Proteína Fosfatasa 2/genética , Fibrosis Pulmonar/patología , Animales , Apoptosis/genética , Bleomicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Síndrome de Dificultad Respiratoria/patología
16.
Am J Respir Crit Care Med ; 199(9): 1127-1138, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789747

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) causes considerable global morbidity and mortality, and its mechanisms of disease progression are poorly understood. Recent observational studies have reported associations between lung dysbiosis, mortality, and altered host defense gene expression, supporting a role for lung microbiota in IPF. However, the causal significance of altered lung microbiota in disease progression is undetermined. Objectives: To examine the effect of microbiota on local alveolar inflammation and disease progression using both animal models and human subjects with IPF. Methods: For human studies, we characterized lung microbiota in BAL fluid from 68 patients with IPF. For animal modeling, we used a murine model of pulmonary fibrosis in conventional and germ-free mice. Lung bacteria were characterized using 16S rRNA gene sequencing with novel techniques optimized for low-biomass sample load. Microbiota were correlated with alveolar inflammation, measures of pulmonary fibrosis, and disease progression. Measurements and Main Results: Disruption of the lung microbiome predicts disease progression, correlates with local host inflammation, and participates in disease progression. In patients with IPF, lung bacterial burden predicts fibrosis progression, and microbiota diversity and composition correlate with increased alveolar profibrotic cytokines. In murine models of fibrosis, lung dysbiosis precedes peak lung injury and is persistent. In germ-free animals, the absence of a microbiome protects against mortality. Conclusions: Our results demonstrate that lung microbiota contribute to the progression of IPF. We provide biological plausibility for the hypothesis that lung dysbiosis promotes alveolar inflammation and aberrant repair. Manipulation of lung microbiota may represent a novel target for the treatment of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/microbiología , Inflamación/microbiología , Pulmón/microbiología , Microbiota/fisiología , Anciano , Animales , Líquido del Lavado Bronquioalveolar/microbiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Vida Libre de Gérmenes , Humanos , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/genética , Persona de Mediana Edad , Alveolos Pulmonares/microbiología , Alveolos Pulmonares/patología , ARN Ribosómico 16S/genética
17.
PLoS Pathog ; 15(1): e1007560, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30682165

RESUMEN

Bacterial lung infections, particularly with methicillin-resistant Staphylococcus aureus (MRSA), increase mortality following influenza infection, but the mechanisms remain unclear. Here we show that expression of TLR9, a microbial DNA sensor, is increased in murine lung macrophages, dendritic cells, CD8+ T cells and epithelial cells post-influenza infection. TLR9-/- mice did not show differences in handling influenza nor MRSA infection alone. However, TLR9-/- mice have improved survival and bacterial clearance in the lung post-influenza and MRSA dual infection, with no difference in viral load during dual infection. We demonstrate that TLR9 is upregulated on macrophages even when they are not themselves infected, suggesting that TLR9 upregulation is related to soluble mediators. We rule out a role for elevations in interferon-γ (IFNγ) in mediating the beneficial MRSA clearance in TLR9-/- mice. While macrophages from WT and TLR9-/- mice show similar phagocytosis and bacterial killing to MRSA alone, following influenza infection, there is a marked upregulation of scavenger receptor A and MRSA phagocytosis as well as inducible nitric oxide synthase (Inos) and improved bacterial killing that is specific to TLR9-deficient cells. Bone marrow transplant chimera experiments and in vitro experiments using TLR9 antagonists suggest TLR9 expression on non-hematopoietic cells, rather than the macrophages themselves, is important for regulating myeloid cell function. Interestingly, improved bacterial clearance post-dual infection was restricted to MRSA, as there was no difference in the clearance of Streptococcus pneumoniae. Taken together these data show a surprising inhibitory role for TLR9 signaling in mediating clearance of MRSA that manifests following influenza infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/inmunología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Humanos , Gripe Humana/inmunología , Pulmón/inmunología , Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Fagocitosis , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Receptor Toll-Like 9/genética
18.
Mucosal Immunol ; 12(2): 518-530, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30498200

RESUMEN

Post influenza bacterial pneumonia is associated with significant mortality and morbidity. Dendritic cells (DCs) play a crucial role in host defense against bacterial pneumonia, but their contribution to post influenza-susceptibility to secondary bacterial pneumonia is incompletely understood. WT and CCR2-/- mice were infected with 100 plaque forming units (pfu) H1N1 intranasally alone or were challenged on day 5 with 7 × 107 colony forming units (cfu) methicillin-resistant Staphylococcus aureus intratracheally. WT mice express abundant CCL2 mRNA and protein post-H1N1 alone or dual infection. CCR2-/- mice had significantly higher survival as compared to WT mice, associated with significantly improved bacterial clearance at 24 and 48 h (10-fold and 14-fold, respectively) post bacterial challenge. There was robust upregulation of IL-23 and IL-17 as well as downregulation of IL-27 expression in CCR2-/- mice following sequential infection as compared to WT mice, which was also associated with significantly greater accumulation of CD103+ DC. Finally, WT mice treated with a CCR2 inhibitor showed improved bacterial clearance in association with similar cytokine profiles as CCR2-/- mice. Thus, CCR2 significantly contributes to increased susceptibility to bacterial infection after influenza pneumonia likely via altered dendritic cell responses and thus, CCR2 antagonism represents a potential therapeutic strategy.


Asunto(s)
Células Dendríticas/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-17/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Neumonía Bacteriana/inmunología , Receptores CCR2/metabolismo , Células Th17/fisiología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Susceptibilidad a Enfermedades , Humanos , Gripe Humana/terapia , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/terapia , Neumonía Bacteriana/terapia , Receptores CCR2/genética
19.
Front Microbiol ; 9: 1888, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186245

RESUMEN

Human cytomegalovirus (HCMV) is an important pathogen in developing fetuses, neonates, and individuals with compromised immune systems. Gaps in our understanding of the mechanisms required for virion assembly stand in the way of development of antivirals targeting late stages of viral replication. During infection, HCMV causes a dramatic reorganization of the host endosecretory system, leading to the formation of the cytoplasmic virion assembly complex (cVAC), the site of virion assembly. As part of cVAC biogenesis, the composition and behavior of endosecretory organelles change. To gain more comprehensive understanding of the impact HCMV infection has on components of the cellular endocytic recycling compartment (ERC), we used previously published transcriptional and proteomic datasets to predict changes in the directionality of ERC trafficking. We identified infection-associated changes in gene expression that suggest shifts in the balance between endocytic and exocytic recycling pathways, leading to formation of a secretory trap within the cVAC. Conversely, there was a corresponding shift favoring outbound secretory vesicle trafficking, indicating a potential role in virion egress. These observations are consistent with previous studies describing sequestration of signaling molecules, such as IL-6, and the synaptic vesicle-like properties of mature HCMV virions. Our analysis enabled development of a refined model incorporating old and new information related to the behavior of the ERC during HCMV replication. While limited by the paucity of integrated systems-level data, the model provides an informed basis for development of experimentally testable hypotheses related to mechanisms involved in HCMV virion maturation and egress. Information from such experiments will provide a robust roadmap for rational development of novel antivirals for HCMV and related viruses.

20.
Dev Cell ; 46(5): 651-667.e10, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146481

RESUMEN

Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células de Sertoli/citología , Análisis de la Célula Individual/métodos , Espermatogénesis , Testículo/citología , Animales , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Masculino , Ratones , Células de Sertoli/metabolismo , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA