Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831106

RESUMEN

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Microambiente Tumoral , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Ratones , Microambiente Tumoral/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Linfocitos T Reguladores/inmunología , Transducción de Señal , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/terapia , Ratones Noqueados
2.
Cytotherapy ; 26(5): 506-511, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38483365

RESUMEN

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Asunto(s)
Supervivencia Celular , Citometría de Flujo , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Citometría de Flujo/métodos , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunofenotipificación/métodos , Tamaño de la Célula
3.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066564

RESUMEN

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Asunto(s)
Linfoma no Hodgkin , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Anticuerpos , Antígenos CD19 , Epítopos/metabolismo , Inmunoterapia Adoptiva/efectos adversos , Linfoma no Hodgkin/terapia , Linfoma no Hodgkin/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores
4.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055217

RESUMEN

Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Linfocitos T Citotóxicos , Apoptosis , Microambiente Tumoral
5.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35904479

RESUMEN

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Linfoma de Células B , Linfoma , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Quiméricos de Antígenos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Linfoma/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Receptores de Antígenos de Linfocitos T , Sulfonamidas , Linfocitos T
6.
J Exp Med ; 218(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601414

RESUMEN

Immunotherapies such as immune checkpoint blockade and adoptive cell transfer have revolutionized cancer treatment, but further progress is hindered by our limited understanding of tumor resistance mechanisms. Emerging technologies now enable the study of tumors at the single-cell level, providing unprecedented high-resolution insights into the genetic makeup of the tumor microenvironment and immune system that bulk genomics cannot fully capture. Here, we highlight the recent key findings of the use of single-cell RNA sequencing to deconvolute heterogeneous tumors and immune populations during immunotherapy. Single-cell RNA sequencing has identified new crucial factors and cellular subpopulations that either promote tumor progression or leave tumors vulnerable to immunotherapy. We anticipate that the strategic use of single-cell analytics will promote the development of the next generation of successful, rationally designed immunotherapeutics.


Asunto(s)
Inmunoterapia , Neoplasias/terapia , RNA-Seq , Análisis de la Célula Individual , Humanos , Neoplasias/inmunología
7.
Am J Hematol ; 94(2): 189-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30417938

RESUMEN

Investigating individual red blood cells (RBCs) is critical to understanding hematologic diseases, as pathology often originates at the single-cell level. Many RBC disorders manifest in altered biophysical properties, such as deformability of RBCs. Due to limitations in current biophysical assays, there exists a need for high-throughput analysis of RBC deformability with single-cell resolution. To that end, we present a method that pairs a simple in vitro artificial microvasculature network system with an innovative MATLAB-based automated particle tracking program, allowing for high-throughput, single-cell deformability index (sDI) measurements of entire RBC populations. We apply our technology to quantify the sDI of RBCs from healthy volunteers, Sickle cell disease (SCD) patients, a transfusion-dependent beta thalassemia major patient, and in stored packed RBCs (pRBCs) that undergo storage lesion over 4 weeks. Moreover, our system can also measure cell size for each RBC, thereby enabling 2D analysis of cell deformability vs cell size with single cell resolution akin to flow cytometry. Our results demonstrate the clear existence of distinct biophysical RBC subpopulations with high interpatient variability in SCD as indicated by large magnitude skewness and kurtosis values of distribution, the "shifting" of sDI vs RBC size curves over transfusion cycles in beta thalassemia, and the appearance of low sDI RBC subpopulations within 4 days of pRBC storage. Overall, our system offers an inexpensive, convenient, and high-throughput method to gauge single RBC deformability and size for any RBC population and has the potential to aid in disease monitoring and transfusion guidelines for various RBC disorders.


Asunto(s)
Deformación Eritrocítica , Eritrocitos/patología , Enfermedades Hematológicas/sangre , Microfluídica/métodos , Anemia de Células Falciformes/sangre , Conservación de la Sangre , Voluntarios Sanos , Humanos , Métodos , Análisis de la Célula Individual/métodos , Talasemia beta/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...