Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979193

RESUMEN

Protein-protein interactions (PPIs) govern virtually all cellular processes. Even a single mutation within PPI can significantly influence overall protein functionality and potentially lead to various types of diseases. To date, numerous approaches have emerged for predicting the change in free energy of binding (ΔΔGbind) resulting from mutations, yet the majority of these methods lack precision. In recent years, protein language models (PLMs) have been developed and shown powerful predictive capabilities by leveraging both sequence and structural data from protein-protein complexes. Yet, PLMs have not been optimized specifically for predicting ΔΔGbind. We developed an approach to predict effects of mutations on PPI binding affinity based on two most advanced protein language models ESM2 and ESM-IF1 that incorporate PPI sequence and structural features, respectively. We used the two models to generate embeddings for each PPI mutant and subsequently fine-tuned our model by training on a large dataset of experimental ΔΔGbind values. Our model, ProBASS (Protein Binding Affinity from Structure and Sequence) achieved a correlation with experimental ΔΔGbind values of 0.83 ± 0.05 for single mutations and 0.69 ± 0.04 for double mutations when model training and testing was done on the same PDB. Moreover, ProBASS exhibited very high correlation (0.81 ± 0.02) between prediction and experiment when training and testing was performed on a dataset containing 2325 single mutations in 132 PPIs. ProBASS surpasses the state-of-the-art methods in correlation with experimental data and could be further trained as more experimental data becomes available. Our results demonstrate that the integration of extensive datasets containing ΔΔGbind values across multiple PPIs to refine the pre-trained PLMs represents a successful approach for achieving a precise and broadly applicable model for ΔΔGbind prediction, greatly facilitating future protein engineering and design studies.

2.
BMC Bioinformatics ; 25(1): 172, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689238

RESUMEN

BACKGROUND: Protein-protein interactions (PPIs) are conveyed through binding interfaces or surface patches on proteins that become buried upon binding. Structural and biophysical analysis of many protein-protein interfaces revealed certain unique features of these surfaces that determine the energetics of interactions and play a critical role in protein evolution. One of the significant aspects of binding interfaces is the presence of binding hot spots, where mutations are highly deleterious for binding. Conversely, binding cold spots are positions occupied by suboptimal amino acids and several mutations in such positions could lead to affinity enhancement. While there are many software programs for identification of hot spot positions, there is currently a lack of software for cold spot detection. RESULTS: In this paper, we present Cold Spot SCANNER, a Colab Notebook, which scans a PPI binding interface and identifies cold spots resulting from cavities, unfavorable charge-charge, and unfavorable charge-hydrophobic interactions. The software offers a Py3DMOL-based interface that allows users to visualize cold spots in the context of the protein structure and generates a zip file containing the results for easy download. CONCLUSIONS: Cold spot identification is of great importance to protein engineering studies and provides a useful insight into protein evolution. Cold Spot SCANNER is open to all users without login requirements and can be accessible at: https://colab. RESEARCH: google.com/github/sagagugit/Cold-Spot-Scanner/blob/main/Cold_Spot_Scanner.ipynb .


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Proteínas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Unión Proteica , Conformación Proteica , Modelos Moleculares , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas
3.
Protein Sci ; 31(10): e4435, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173158

RESUMEN

Proteins interact with each other through binding interfaces that differ greatly in size and physico-chemical properties. Within the binding interface, a few residues called hot spots contribute the majority of the binding free energy and are hence irreplaceable. In contrast, cold spots are occupied by suboptimal amino acids, providing possibility for affinity enhancement through mutations. In this study, we identify cold spots due to cavities and unfavorable charge interactions in multiple protein-protein interactions (PPIs). For our cold spot analysis, we first use a small affinity database of PPIs with known structures and affinities and then expand our search to nearly 4000 homo- and heterodimers in the Protein Data Bank (PDB). We observe that cold spots due to cavities are present in nearly all PPIs unrelated to their binding affinity, while unfavorable charge interactions are relatively rare. We also find that most cold spots are located in the periphery of the binding interface, with high-affinity complexes showing fewer centrally located colds spots than low-affinity complexes. A larger number of cold spots is also found in non-cognate interactions compared to their cognate counterparts. Furthermore, our analysis reveals that cold spots are more frequent in homo-dimeric complexes compared to hetero-complexes, likely due to symmetry constraints imposed on sequences of homodimers. Finally, we find that glycines, glutamates, and arginines are the most frequent amino acids appearing at cold spot positions. Our analysis emphasizes the importance of cold spot positions to protein evolution and facilitates protein engineering studies directed at enhancing binding affinity and specificity in a wide range of applications.


Asunto(s)
Aminoácidos , Proteínas , Aminoácidos/química , Bases de Datos de Proteínas , Glutamatos/genética , Glutamatos/metabolismo , Unión Proteica , Ingeniería de Proteínas , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...