Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829391

RESUMEN

The intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in the regulation of mucus formation during steady state and in response to carbamylcholine (CCh) and prostaglandin E2 (PGE2). The broad-spectrum anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), CftrdF508 (CF) mice, and the slc26a3 inhibitor SLC26A3-IN-2 were used to inhibit anion transport. In the distal colon, steady-state mucus expansion was reduced by SLC26A3-IN-2 and normal in CF mice. PGE2 stimulated mucus expansion without de novo mucus release in wild type (WT) and CF colon via slc26a3 sensitive mechanisms, while CCh induced de novo mucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2 stimulated de novo mucus secretion in the CF colon via DIDS-sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2 with DIDS-sensitive de novo mucus secretion. In conclusion, this study suggests that slc26a3 regulates colonic mucus expansion, while Cftr regulates CCh-induced de novo mucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, parallel stimulation with CCh and PGE2 activates additional anion transport processes that help release mucus from intestinal goblet cells.

2.
Front Immunol ; 13: 953196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177011

RESUMEN

The intestinal tract is an ecosystem in which the resident microbiota lives in symbiosis with its host. This symbiotic relationship is key to maintaining overall health, with dietary habits of the host representing one of the main external factors shaping the microbiome-host relationship. Diets high in fiber and low in fat and sugars, as opposed to Western and high-fat diets, have been shown to have a beneficial effect on intestinal health by promoting the growth of beneficial bacteria, improve mucus barrier function and immune tolerance, while inhibiting pro-inflammatory responses and their downstream effects. On the contrary, diets low in fiber and high in fat and sugars have been associated with alterations in microbiota composition/functionality and the subsequent development of chronic diseases such as food allergies, inflammatory bowel disease, and metabolic disease. In this review, we provided an updated overview of the current understanding of the connection between diet, microbiota, and health, with a special focus on the role of Western and high-fat diets in shaping intestinal homeostasis by modulating the gut microbiota.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Dieta Alta en Grasa , Fibras de la Dieta , Moco , Azúcares
3.
Nat Rev Gastroenterol Hepatol ; 19(12): 785-803, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097076

RESUMEN

The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.


Asunto(s)
Células Caliciformes , Mucinas , Humanos , Células Caliciformes/patología , Células Caliciformes/fisiología , Mucinas/genética , Moco , Intestinos , Homeostasis , Mucosa Intestinal/patología
4.
Elife ; 102021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34677124

RESUMEN

Intestinal goblet cells maintain the protective epithelial barrier through mucus secretion and yet sample lumenal substances for immune processing through formation of goblet cell associated antigen passages (GAPs). The cellular biology of GAPs and how these divergent processes are balanced and regulated by goblet cells remains unknown. Using high-resolution light and electron microscopy, we found that in mice, GAPs were formed by an acetylcholine (ACh)-dependent endocytic event remarkable for delivery of fluid-phase cargo retrograde into the trans-golgi network and across the cell by transcytosis - in addition to the expected transport of fluid-phase cargo by endosomes to multi-vesicular bodies and lysosomes. While ACh also induced goblet cells to secrete mucins, ACh-induced GAP formation and mucin secretion were functionally independent and mediated by different receptors and signaling pathways, enabling goblet cells to differentially regulate these processes to accommodate the dynamically changing demands of the mucosal environment for barrier maintenance and sampling of lumenal substances.


Cells in the gut need to be protected against the many harmful microbes which inhabit this environment. Yet the immune system also needs to 'keep an eye' on intestinal contents to maintain tolerance to innocuous substances, such as those from the diet. The 'goblet cells' that are part of the gut lining do both: they create a mucus barrier that stops germs from invading the body, but they also can pass on molecules from the intestine to immune cells deep in the tissue to promote tolerance. This is achieved through a 'GAP' mechanism. A chemical messenger called acetylcholine can trigger both mucus release and the GAP process in goblet cells. Gustafsson et al. investigated how the cells could take on these two seemingly opposing roles in response to the same signal. A fluorescent molecule was introduced into the intestines of mice, and monitored as it pass through the goblet cells. This revealed how the GAP process took place: the cells were able to capture molecules from the intestines, wrap them in internal sack-like vesicles and then transport them across the entire cell. To explore the role of acetylcholine, Gustafsson et al. blocked the receptors that detect the messenger at the surface of goblet cells. Different receptors and therefore different cascades of molecular events were found to control mucus secretion and GAP formation; this explains how the two processes can be performed in parallel and independently from each other. Understanding how cells relay molecules to the immune system is relevant to other tissues in contact with the environment, such as the eyes, the airways, or the inside of the genital and urinary tracts. Understanding, and then ultimately harnessing this mechanism could help design of new ways to deliver drugs to the immune system and alter immune outcomes.


Asunto(s)
Antígenos/metabolismo , Células Caliciformes/metabolismo , Transcitosis , Vesículas Transportadoras/fisiología , Animales , Ratones
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431687

RESUMEN

Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.


Asunto(s)
Colitis/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Mucina 2/genética , Animales , Colitis/patología , Colitis/prevención & control , Colitis/terapia , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Potenciales de la Membrana/genética , Ratones , Técnicas de Placa-Clamp
6.
JCI Insight ; 5(15)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32759496

RESUMEN

Allergic disorders, characterized by Th2 immune responses to environmental substances, are increasingly common in children in Western societies. Multiple studies indicate that breastfeeding, early complementary introduction of food allergens, and antibiotic avoidance in the first year of life reduces allergic outcomes in at-risk children. Why the benefit of these practices is restricted to early life is largely unknown. We identified a preweaning interval during which dietary antigens are assimilated by the colonic immune system. This interval is under maternal control via temporal changes in breast milk, coincides with an influx of naive T cells into the colon, and is followed by the development of a long-lived population of colonic peripherally derived Tregs (pTregs) that can be specific for dietary antigens encountered during this interval. Desynchronization of mothers and offspring produced durable deficits in these pTregs, impaired tolerance to dietary antigens introduced during and after this preweaning interval, and resulted in spontaneous Th2 responses. These effects could be rescued by pTregs from the periweaning colon or by Tregs generated in vitro using periweaning colonic antigen-presenting cells. These findings demonstrate that mothers and their offspring are synchronized for the development of a balanced immune system.


Asunto(s)
Alérgenos/inmunología , Colon/inmunología , Hipersensibilidad a los Alimentos/prevención & control , Tolerancia Inmunológica/inmunología , Leche/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Animales , Animales Recién Nacidos , Células Presentadoras de Antígenos/inmunología , Femenino , Hipersensibilidad a los Alimentos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Madres , Ovalbúmina/inmunología , Destete
7.
Lab Anim (NY) ; 49(3): 79-88, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042160

RESUMEN

The intestinal immune system samples luminal contents to induce adaptive immune responses that include tolerance in the steady state and protective immunity during infection. How luminal substances are delivered to the immune system has not been fully investigated. Goblet cells have an important role in this process by delivering luminal substances to the immune system through the formation of goblet cell-associated antigen passages (GAPs). Soluble antigens in the intestinal lumen are transported across the epithelium transcellularly through GAPs and delivered to dendritic cells for presentation to T cells and induction of immune responses. GAPs can be identified and quantified by using the ability of GAP-forming goblet cells to take up fluorescently labeled dextran. Here, we describe a method to visualize GAPs and other cells that have the capacity to take up luminal substances by intraluminal injection of fluorescent dextran in mice under anesthesia, tissue sectioning for slide preparation and imaging with fluorescence microscopy. In contrast to in vivo two-photon imaging previously used to identify GAPs, this technique is not limited by anatomical constraints and can be used to visualize GAP formation throughout the length of the intestine. In addition, this method can be combined with common immunohistochemistry protocols to visualize other cell types. This approach can be used to compare GAP formation following different treatments or changes to the luminal environment and to uncover how sampling of luminal substances is altered in pathophysiological conditions. This protocol requires 8 working hours over 2-3 d to be completed.


Asunto(s)
Antígenos/metabolismo , Colon/inmunología , Células Dendríticas/inmunología , Células Caliciformes/inmunología , Vigilancia Inmunológica , Intestino Delgado/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Antígenos/inmunología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Dextranos/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Células Caliciformes/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Microbiota/inmunología , Ovalbúmina/administración & dosificación , Proyectos de Investigación
8.
Mucosal Immunol ; 13(2): 271-282, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31819172

RESUMEN

Tolerance to innocuous antigens from the diet and the commensal microbiota is a fundamental process essential to health. Why tolerance is efficiently induced to substances arising from the hostile environment of the gut lumen is incompletely understood but may be related to how these antigens are encountered by the immune system. We observed that goblet cell associated antigen passages (GAPs), but not other pathways of luminal antigen capture, correlated with the acquisition of luminal substances by lamina propria (LP) antigen presenting cells (APCs) and with the sites of tolerance induction to luminal antigens. Strikingly this role extended beyond antigen delivery. The GAP function of goblet cells facilitated maintenance of pre-existing LP T regulatory cells (Tregs), imprinting LP-dendritic cells with tolerogenic properties, and facilitating LP macrophages to produce the immunomodulatory cytokine IL-10. Moreover, tolerance to dietary antigen was impaired in the absence of GAPs. Thus, by delivering luminal antigens, maintaining pre-existing LP Tregs, and imprinting tolerogenic properties on LP-APCs GAPs support tolerance to substances encountered in the hostile environment of the gut lumen.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Células Caliciformes/inmunología , Macrófagos/inmunología , Membrana Mucosa/inmunología , Linfocitos T Reguladores/inmunología , Administración Oral , Animales , Presentación de Antígeno , Antígenos/inmunología , Células Cultivadas , Proteínas Activadoras de GTPasa/metabolismo , Tolerancia Inmunológica , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
J Allergy Clin Immunol ; 144(4): 1058-1073.e3, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31175877

RESUMEN

BACKGROUND: Food-induced anaphylaxis (FIA) is an IgE-dependent immune response that can affect multiple organs and lead to life-threatening complications. The processes by which food allergens cross the mucosal surface and are delivered to the subepithelial immune compartment to promote the clinical manifestations associated with food-triggered anaphylaxis are largely unexplored. OBJECTIVE: We sought to define the processes involved in the translocation of food allergens across the mucosal epithelial surface to the subepithelial immune compartment in FIA. METHODS: Two-photon confocal and immunofluorescence microscopy was used to visualize and trace food allergen passage in a murine model of FIA. A human colon cancer cell line, RNA silencing, and pharmacologic approaches were used to identify the molecular regulation of intestinal epithelial allergen uptake and translocation. Human intestinal organoid transplants were used to demonstrate the conservation of these molecular processes in human tissues. RESULTS: Food allergens are sampled by using small intestine (SI) epithelial secretory cells (termed secretory antigen passages [SAPs]) that are localized to the SI villous and crypt region. SAPs channel food allergens to lamina propria mucosal mast cells through an IL-13-CD38-cyclic adenosine diphosphate ribose (cADPR)-dependent process. Blockade of IL-13-induced CD38/cADPR-dependent SAP antigen passaging in mice inhibited induction of clinical manifestations of FIA. IL-13-CD38-cADPR-dependent SAP sampling of food allergens was conserved in human intestinal organoids. CONCLUSION: We identify that SAPs are a mechanism by which food allergens are channeled across the SI epithelium mediated by the IL-13/CD38/cADPR pathway, regulate the onset of FIA reactions, and are conserved in human intestine.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/inmunología , Hipersensibilidad a los Alimentos/inmunología , Interleucina-13/inmunología , Mucosa Intestinal/inmunología , Alérgenos/metabolismo , Anafilaxia/metabolismo , Animales , Hipersensibilidad a los Alimentos/metabolismo , Humanos , Inmunoglobulina E/inmunología , Interleucina-13/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID
10.
Inflamm Bowel Dis ; 25(1): 180-193, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982468

RESUMEN

Background: Assessing risk of Crohn's disease (CD) recurrence following ileocolic resection (ICR) is necessary to optimize medical management and prevent long-term complications. This study aimed to identify noninvasive markers that could predict postoperative disease activity. Methods: Inclusion criteria were a diagnosis of CD, first ICR, interval colonoscopy, and whole transcriptome array meeting quality control standards. Demographic and clinical data were obtained from the electronic medical record. RNA extraction and human transcriptome microarray were performed on noninflamed ileal margins from operative specimens. Clinical data and random forest were analyzed in R. Principal components analysis, hierarchical clustering, and pathway enrichment were performed in Partek. Results: Sixty-five patients completed the study, and 5 were excluded from analysis due to extreme variability on whole transcriptome analysis. Unsupervised hierarchical clustering revealed that patients with an i0 Rutgeerts score generally segregated from all others. In anti-TNF-naïve patients, unsupervised hierarchical clustering revealed complete segregation of patients with an i0 score. Reduced escalation in therapy and continued mucosal remission, consistent with indolent disease, were seen in the 4 years following surgery. Random forest identified 30 transcripts differentiating i0 patients from the other groups. Pathway enrichment highlighted toll-like receptor, NOD-like receptor, and TNF signaling. This transcriptome signature did not identify i0 anti-TNF-exposed patients. However, anti-TNF-exposed patients with indolent postoperative courses were found to have a transcriptome signature distinct from those with aggressive disease. Conclusions: Anti-TNF-naïve and -exposed patients have unique expression profiles at the time of surgery, which may offer predictive value in assessing the risk of nonrecurrence. 10.1093/ibd/izy228_video1izy228.video15804852517001.


Asunto(s)
Anastomosis Quirúrgica/efectos adversos , Colectomía/efectos adversos , Colon/cirugía , Enfermedad de Crohn/cirugía , Íleon/cirugía , Complicaciones Posoperatorias/diagnóstico , Transcriptoma/efectos de los fármacos , Adulto , Anticuerpos Monoclonales/uso terapéutico , Estudios de Cohortes , Terapia Combinada , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/patología , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Masculino , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/genética , Pronóstico , Recurrencia , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/uso terapéutico
11.
Mucosal Immunol ; 11(4): 1103-1113, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29445136

RESUMEN

Dietary antigen acquisition by lamina propria (LP) dendritic cells (DCs) is crucial to induce oral tolerance and maintain homeostasis. However, encountering innocuous antigens during infection can lead to inflammatory responses, suggesting processes may limit steady-state luminal antigen capture during infection. We observed that goblet cell (GC) associated antigen passages (GAPs), a steady-state pathway delivering luminal antigens to LP-DCs, are inhibited during Salmonella infection. GAP inhibition was mediated by IL-1ß. Infection abrogated luminal antigen delivery and antigen-specific T cell proliferation in the mesenteric lymph node (MLN). Antigen-specific T cell proliferation to dietary antigen was restored by overriding GAP suppression; however, this did not restore regulatory T cell induction, but induced inflammatory T cell responses. Salmonella translocation to the MLN required GCs and correlated with GAPs. Genetic manipulations overriding GAP suppression, or antibiotics inducing colonic GAPs, but not antibiotics that do not, increased dissemination and worsened outcomes independent of luminal pathogen burden. Thus, steady-state sampling pathways are suppressed during infection to prevent responses to dietary antigens, limit pathogen entry, and lessen the disease. Moreover, antibiotics may worsen Salmonella infection by means beyond blunting gut microbiota colonization resistance, providing new insight into how precedent antibiotic use aggravates enteric infection.


Asunto(s)
Células Dendríticas/inmunología , Células Caliciformes/inmunología , Membrana Mucosa/patología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Antígenos/inmunología , Proliferación Celular , Proteínas en la Dieta/inmunología , Transmisión de Enfermedad Infecciosa , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Salmonella typhimurium/patogenicidad
12.
Sci Immunol ; 2(18)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246946

RESUMEN

We have a mutually beneficial relationship with the trillions of microorganisms inhabiting our gastrointestinal tract. However, maintaining this relationship requires recognizing these organisms as affable and restraining inflammatory responses to these organisms when encountered in hostile settings. How and when the immune system develops tolerance to our gut microbial members is not well understood. We identify a specific preweaning interval in which gut microbial antigens are encountered by the immune system to induce antigen-specific tolerance to gut bacteria. For some bacterial taxa, physiologic encounters with the immune system are restricted to this interval, despite abundance of these taxa in the gut lumen at later times outside this interval. Antigen-specific tolerance to gut bacteria induced during this preweaning interval is stable and maintained even if these taxa are encountered later in life in an inflammatory setting. However, inhibiting microbial antigen encounter during this interval or extending these encounters beyond the normal interval results in a failure to induce tolerance and robust antigen-specific effector responses to gut bacteria upon reencounter in an inflammatory setting. Thus, we have identified a defined preweaning interval critical for developing tolerance to gut bacteria and maintaining the mutually beneficial relationship with our gut microbiota.


Asunto(s)
Antígenos Bacterianos/inmunología , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tolerancia Inmunológica/inmunología , Animales , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Destete
13.
Immunology ; 152(4): 613-627, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28746740

RESUMEN

The intestinal lamina propria (LP) contains antigen-presenting cells with features of dendritic cells and macrophages, collectively referred to as mononuclear phagocytes (MNPs). Association of MNPs with the epithelium is thought to play an important role in multiple facets of intestinal immunity including imprinting MNPs with the ability to induce IgA production, inducing the expression of gut homing molecules on T cells, facilitating the capture of luminal antigens and microbes, and subsequent immune responses in the mesenteric lymph node (MLN). However, the factors promoting this process in the steady state are largely unknown, and in vivo models to test and confirm the importance of LP-MNP association with the epithelium for these outcomes are unexplored. Evaluation of epithelial expression of chemoattractants in mice where MNP-epithelial associations were impaired suggested CCL20 as a candidate promoting epithelial association. Expression of CCR6, the only known receptor for CCL20, was required for MNPs to associate with the epithelium. LP-MNPs from CCR6-/- mice did not display defects in acquiring antigen and stimulating T-cell responses in ex vivo assays or in responses to antigen administered systemically. However, LP-MNPs from CCR6-deficient mice were impaired at acquiring luminal and epithelial antigens, inducing IgA production in B cells, inducing immune responses in the MLN, and capturing and trafficking luminal commensal bacteria to the MLN. These findings identify a crucial role for CCR6 in promoting LP-MNPs to associate with the intestinal epithelium in the steady state to perform multiple functions promoting gut immune homeostasis.


Asunto(s)
Células Dendríticas/inmunología , Impresión Genómica/inmunología , Vigilancia Inmunológica , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Receptores CCR6/inmunología , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Quimiocina CCL20/genética , Quimiocina CCL20/inmunología , Células Dendríticas/citología , Humanos , Macrófagos/citología , Ratones , Ratones Noqueados , Receptores CCR6/genética , Linfocitos T/citología , Linfocitos T/inmunología
14.
Gut Microbes ; 8(4): 400-411, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28267403

RESUMEN

Bacterial translocation is defined as the passage of live bacteria from the gut lumen to distant sites. Gut commensal bacteria translocation has been attributed to 'leakiness', or 'barrier breach' of the intestinal epithelium, allowing live bacteria to cross an inappropriately permeable barrier and disseminate to distant sites. Alternatively, studies suggest dendritic cells directly capture luminal commensal bacteria and transport them to distant sites in the steady-state by extending dendrites between epithelial cells into the lumen. Recently we identified translocation of commensal gut bacteria following antibiotics was associated with the formation of goblet cell associated antigen passages (GAPs) in the colon and dependent upon goblet cells (GCs). The translocation of native gut commensal bacteria resulted in low-level inflammatory responses and potentiated mucosal damage in response to concurrent epithelial injury. Here we extend these observations and demonstrate properties of colonic GAPs and observations supporting their priority in the translocation of colonic commensal bacteria.


Asunto(s)
Antibacterianos/farmacología , Traslocación Bacteriana/efectos de los fármacos , Colon/microbiología , Células Caliciformes/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Colon/efectos de los fármacos , Colon/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Células Caliciformes/citología , Células Caliciformes/efectos de los fármacos , Humanos
15.
Eur J Pharmacol ; 764: 109-117, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26134505

RESUMEN

A non-functional Cystic Fibrosis Transmembrane conductance Regulator (CFTR) leads to the disease cystic fibrosis (CF). Although the CFTR is expressed in multiple organs, pulmonary disease is the major cause of illness and death in patients with CF. Stagnant mucus, causing airway obstruction, bacterial overgrowth, persistent inflammation and tissue destruction characterizes the disease, but how the defect in CFTR function is coupled to the mucus phenotype is still controversial. We have recently shown that bicarbonate ions passing through CFTR are necessary for proper unfolding of the MUC2 mucin, thus highlighting the importance of bicarbonate ion transport via the CFTR and the ability of these ions to raise the pH and chelate calcium bound to the mucin as the important steps in forming normal mucus. In order to find potential CF treatments and expand our knowledge about the usefulness of bicarbonate as an active ingredient in formulations to alleviate mucus plugging, we used an Ussing-type chamber and explants from the F508del-CFTR mutant mouse ileum to test the effect of calcium chelators on mucus attachment, either in isolation or in combination with osmolytes such as mannitol or hypertonic saline. We found that increasing the concentration of bicarbonate, both alone or in combination with increased osmolarity of the solution, detached the otherwise attached CF mucus.


Asunto(s)
Quelantes del Calcio/farmacología , Fibrosis Quística/metabolismo , Moco/efectos de los fármacos , Moco/metabolismo , Animales , Bicarbonatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Transporte Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Concentración Osmolar
16.
Pflugers Arch ; 467(7): 1403-1415, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25139191

RESUMEN

The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.


Asunto(s)
Colon/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Canales de Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Carbacol/farmacología , Cloruros/metabolismo , Colon/citología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exocitosis , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Transporte Iónico , Ratones , Ratones Endogámicos C57BL , Mucinas/metabolismo , Agonistas Muscarínicos/farmacología , Potasio/metabolismo , Canales de Potasio/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética
17.
PLoS One ; 9(6): e99449, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24925340

RESUMEN

Development of effective non-viral vectors is of crucial importance in the implementation of RNA interference in clinical routine. The localized delivery of siRNAs to the gastrointestinal mucosa is highly desired but faces specific problems such as the stability in gastric acidity conditions and the presence of the mucus barrier. CDX2 is a transcription factor critical for intestinal differentiation being involved in the initiation and maintenance of gastrointestinal diseases. Specifically, it is the trigger of gastric intestinal metaplasia which is a precursor lesion of gastric cancer. Its expression is also altered in colorectal cancer, where it may constitute a lineage-survival oncogene. Our main objective was to develop a nanoparticle-delivery system of siRNA targeting CDX2 using modified chitosan as a vector. CDX2 expression was assessed in gastric carcinoma cell lines and nanoparticles behaviour in gastrointestinal mucus was tested in mouse explants. We show that imidazole-modified chitosan and trimethylchitosan/siRNA nanoparticles are able to downregulate CDX2 expression and overpass the gastric mucus layer but not colonic mucus. This system might constitute a potential therapeutic approach to treat CDX2-dependent gastric lesions.


Asunto(s)
Quitosano/química , Regulación hacia Abajo , Mucosa Gástrica/metabolismo , Proteínas de Homeodominio/metabolismo , Moco/metabolismo , Nanopartículas/química , ARN Interferente Pequeño/metabolismo , Animales , Factor de Transcripción CDX2 , Línea Celular Tumoral , Colon/metabolismo , Humanos , Imidazoles/química , Ratones , Nanopartículas/ultraestructura , Transfección
18.
Immunol Rev ; 260(1): 8-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24942678

RESUMEN

The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.


Asunto(s)
Enterocitos/fisiología , Tracto Gastrointestinal/inmunología , Células Caliciformes/fisiología , Mucinas/fisiología , Membrana Mucosa/inmunología , Moco/fisiología , Animales , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Sistema Inmunológico , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Moco/química , Moco/microbiología , Ganglios Linfáticos Agregados/inmunología
19.
Gut ; 63(2): 281-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23426893

RESUMEN

OBJECTIVE: The inner mucus layer in mouse colon normally separates bacteria from the epithelium. Do humans have a similar inner mucus layer and are defects in this mucus layer a common denominator for spontaneous colitis in mice models and ulcerative colitis (UC)? METHODS AND RESULTS: The colon mucus layer from mice deficient in Muc2 mucin, Core 1 O-glycans, Tlr5, interleukin 10 (IL-10) and Slc9a3 (Nhe3) together with that from dextran sodium sulfate-treated mice was immunostained for Muc2, and bacterial localisation in the mucus was analysed. All murine colitis models revealed bacteria in contact with the epithelium. Additional analysis of the less inflamed IL-10(-/-) mice revealed a thicker mucus layer than wild-type, but the properties were different, as the inner mucus layer could be penetrated both by bacteria in vivo and by fluorescent beads the size of bacteria ex vivo. Clear separation between bacteria or fluorescent beads and the epithelium mediated by the inner mucus layer was also evident in normal human sigmoid colon biopsy samples. In contrast, mucus on colon biopsy specimens from patients with UC with acute inflammation was highly penetrable. Most patients with UC in remission had an impenetrable mucus layer similar to that of controls. CONCLUSIONS: Normal human sigmoid colon has an inner mucus layer that is impenetrable to bacteria. The colon mucus in animal models that spontaneously develop colitis and in patients with active UC allows bacteria to penetrate and reach the epithelium. Thus colon mucus properties can be modulated, and this suggests a novel model of UC pathophysiology.


Asunto(s)
Colitis Ulcerosa/microbiología , Colitis/microbiología , Colon/microbiología , Mucosa Intestinal/microbiología , Mucina 2/metabolismo , Moco/microbiología , Adolescente , Adulto , Anciano , Animales , Colitis/metabolismo , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Femenino , Humanos , Hibridación Fluorescente in Situ , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
20.
PLoS One ; 8(12): e83688, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358305

RESUMEN

Peyer's patches (PPs) are collections of lymphoid follicles in the small intestine, responsible for scanning the intestinal content for foreign antigens such as soluble molecules, particulate matter as well as intact bacteria and viruses. The immune cells of the patch are separated from the intestinal lumen by a single layer of epithelial cells, the follicle-associated epithelium (FAE). This epithelium covers the dome of the follicle and contains enterocyte-like cells and M cells, which are particularly specialized in taking up antigens from the gut. However, the presence and number of goblet cells as well as the presence of mucus on top of the FAE is controversial. When mouse ileal PPs were mounted in a horizontal Ussing-type chamber, we could observe a continuous mucus layer at mounting and new, easily removable mucus was released from the villi on the patch upon stimulation. Confocal imaging using fluorescent beads revealed a penetrable mucus layer covering the domes. Furthermore, immunostaining of FAE from mice, rats and humans with a specific antibody against the main component of intestinal mucus, the MUC2 mucin, clearly identify mucin-containing goblet cells. Transmission electron micrographs further support the identification of mucus releasing goblet cells on the domes of PPs in these species.


Asunto(s)
Células Caliciformes/metabolismo , Íleon/citología , Íleon/metabolismo , Moco/metabolismo , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Células Caliciformes/ultraestructura , Humanos , Íleon/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Masculino , Ratones , Mucina 2/metabolismo , Ganglios Linfáticos Agregados/inmunología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA