Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 220: 114865, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368140

RESUMEN

Classification and sorting of cells using image-activated cell sorting (IACS) systems can bring significant insight to biomedical sciences. Incorporating deep learning algorithms into IACS enables cell classification and isolation based on complex and human-vision uninterpretable morphological features within a heterogeneous cell population. However, the limited capabilities and complicated implementation of deep learning-assisted IACS systems reported to date hinder the adoption of the systems for a wide range of biomedical research. Here, we present image-activated cell sorting by applying fast deep learning algorithms to conduct cell sorting without labeling. The overall sorting latency, including signal processing and AI inferencing, is less than 3 ms, and the training time for the deep learning model is less than 30 min with a training dataset of 20,000 images. Both values set the record for IACS with sorting by AI inference. . We demonstrated our system performance through a 2-part polystyrene beads sorting experiment with 96.6% sorting purity, and a 3-part human leukocytes sorting experiment with 89.05% sorting purity for monocytes, 92.00% sorting purity for lymphocytes, and 98.24% sorting purity for granulocytes. The above performance was achieved with simple hardware containing only 1 FPGA, 1 PC and GPU, as a result of an optimized custom CNN UNet and efficient use of computing power. The system provides a compact, sterile, low-cost, label-free, and low-latency cell sorting solution based on real-time AI inferencing and fast training of the deep learning model.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Procesamiento de Señales Asistido por Computador
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173045

RESUMEN

We develop a high-throughput technique to relate positions of individual cells to their three-dimensional (3D) imaging features with single-cell resolution. The technique is particularly suitable for nonadherent cells where existing spatial biology methodologies relating cell properties to their positions in a solid tissue do not apply. Our design consists of two parts, as follows: recording 3D cell images at high throughput (500 to 1,000 cells/s) using a custom 3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-in-first-out (FIFO) manner using a robotic cell placement platform (CPP). To prevent errors due to violations of the FIFO principle, we invented a method that uses marker beads and DNA sequencing software to detect errors. Experiments with human cancer cell lines demonstrate the feasibility of mapping 3D side scattering and fluorescent images, as well as two-dimensional (2D) transmission images of cells to their locations on the membrane filter for around 100,000 cells in less than 10 min. While the current work uses our specially designed 3D imaging flow cytometer to produce 3D cell images, our methodology can support other imaging modalities. The technology and method form a bridge between single-cell image analysis and single-cell molecular analysis.


Asunto(s)
Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Citometría de Flujo/instrumentación , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Programas Informáticos
3.
APL Photonics ; 6(7): 076101, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263031

RESUMEN

The microfluidic-based, label-free image-guided cell sorter offers a low-cost, high information content, and disposable solution that overcomes many limitations in conventional cell sorters. However, flow confinement for most microfluidic devices is generally only one-dimensional using sheath flow. As a result, the equilibrium distribution of cells spreads beyond the focal plane of commonly used Gaussian laser excitation beams, resulting in a large number of blurred images that hinder subsequent cell sorting based on cell image features. To address this issue, we present a Bessel-Gaussian beam image-guided cell sorter with an ultra-long depth of focus, enabling focused images of >85% of passing cells. This system features label-free sorting capabilities based on features extracted from the output temporal waveform of a photomultiplier tube (PMT) detector. For the sorting of polystyrene beads, SKNO1 leukemia cells, and Scenedesmus green algae, our results indicate a sorting purity of 97%, 97%, and 98%, respectively, showing that the temporal waveforms from the PMT outputs have strong correlations with cell image features. These correlations are also confirmed by off-line reconstructed cell images from a temporal-spatial transformation algorithm tailored to the scanning Bessel-Gaussian beam.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA