Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Wellcome Open Res ; 7: 185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966957

RESUMEN

Cre/Lox technology is a powerful tool in the mouse genetics tool-box as it enables tissue-specific and inducible mutagenesis of specific gene loci. Correct interpretation of phenotypes depends upon knowledge of the Cre expression pattern in the chosen mouse driver line to ensure that appropriate cell types are targeted. For studies of the brain and neurological disease a pan-neuronal promoter that reliably drives efficient neuron-specific transgene expression would be valuable. Here we compare a widely used "pan-neuronal" mouse Cre driver line, Syn1-cre, with a little-known alternative, Snap25-IRES2-cre. Our results show that the Syn1-cre line broadly expresses in the brain but is indetectable in more than half of all neurons and weakly active in testes. In contrast the Snap25-IRES2-cre line expressed Cre in a high proportion of neurons (~85%) and was indetectable in all non-brain tissues that were analysed, including testes. Our findings suggest that for many purposes Snap25-IRES2-cre is superior to Syn1-cre as a potential pan-neuronal cre driver.

2.
Nat Commun ; 11(1): 4118, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807789

RESUMEN

Epigenetic information is transmitted from mother to daughter cells through mitosis. Here, to identify factors that might play a role in conveying epigenetic memory through cell division, we report on the isolation of unfixed, native chromosomes from metaphase-arrested cells using flow cytometry and perform LC-MS/MS to identify chromosome-bound proteins. A quantitative proteomic comparison between metaphase-arrested cell lysates and chromosome-sorted samples reveals a cohort of proteins that were significantly enriched on mitotic ESC chromosomes. These include pluripotency-associated transcription factors, repressive chromatin-modifiers such as PRC2 and DNA methyl-transferases, and proteins governing chromosome architecture. Deletion of PRC2, Dnmt1/3a/3b or Mecp2 in ESCs leads to an increase in the size of individual mitotic chromosomes, consistent with de-condensation. Similar results were obtained by the experimental cleavage of cohesin. Thus, we identify chromosome-bound factors in pluripotent stem cells during mitosis and reveal that PRC2, DNA methylation and Mecp2 are required to maintain chromosome compaction.


Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , ADN Metiltransferasa 3A , Técnica del Anticuerpo Fluorescente , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Proteómica , ADN Metiltransferasa 3B
3.
J Proteomics ; 210: 103537, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31629059

RESUMEN

Rett syndrome (RTT) is a leading cause of severe intellectual disability in females, caused by de novo loss-of function mutations in the X-linked methyl-CpG binding protein 2 (MECP2). To better investigate RTT disease progression/pathogenesis animal models of Mecp2 deficiency have been developed. Here, Mecp2 mouse models are employed to investigate the role of protein patterns in RTT. A proteome analysis was carried out in brain tissue from i) Mecp2 deficient mice at the pre-symptomatic and symptomatic stages and, ii) mice in which the disease phenotype was reversed by Mecp2 reactivation. Several proteins were shown to be differentially expressed in the pre-symptomatic (n = 18) and symptomatic (n = 20) mice. Mecp2 brain reactivated mice showed wild-type comparable levels of expression for twelve proteins, mainly related to proteostasis (n = 4) and energy metabolic pathways (n = 4). The remaining ones were found to be involved in redox homeostasis (n = 2), nitric oxide regulation (n = 1), neurodevelopment (n = 1). Ten out of twelve proteins were newly linked to Mecp2 deficiency. Our study sheds light on the relevance of the protein-regulation of main physiological process in the complex mechanisms leading from Mecp2 mutation to the RTT clinical phenotype. SIGNIFICANCE: We performed a proteomic study of a Mecp2stop/y mouse model for Rett syndrome (RTT) at the pre-symptomatic and symptomatic Mecp2 deficient mice stage and for the brain specific reactivated Mecp2 model. Our results reveal major protein expression changes pointing out to defects in proteostasis or energy metabolic pathways other than, to a lesser extent, in redox homeostasis, nitric oxide regulation or neurodevelopment. The Mecp2 mouse rescued model provides the possibility to select target proteins more susceptible to the Mecp2 gene mutation, potential and promising therapeutical targets.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/fisiología , Mutación , Estrés Oxidativo , Proteoma/metabolismo , Síndrome de Rett/etiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteoma/análisis , Proteómica/métodos , Síndrome de Rett/patología
4.
Genes Dev ; 32(23-24): 1514-1524, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463906

RESUMEN

Duplication of the X-linked MECP2 gene causes a severe neurological syndrome whose molecular basis is poorly understood. To determine the contribution of known functional domains to overexpression toxicity, we engineered a mouse model that expresses wild-type or mutated MeCP2 from the Mapt (Tau) locus in addition to the endogenous protein. Animals that expressed approximately four times the wild-type level of MeCP2 failed to survive to weaning. Strikingly, a single amino acid substitution that prevents MeCP2 from binding to the TBL1X(R1) subunit of nuclear receptor corepressor 1/2 (NCoR1/2) complexes, when expressed at equivalent high levels, was phenotypically indistinguishable from wild type, suggesting that excessive corepressor recruitment underlies toxicity. In contrast, mutations affecting the DNA-binding domain were toxic when overexpressed. As the NCoR1/2 corepressors are thought to act through histone deacetylation by histone deacetylase 3 (HDAC3), we asked whether mutations in NCoR1 and NCoR2 that drastically reduced their ability to activate this enzyme would relieve the MeCP2 overexpression phenotype. Surprisingly, severity was unaffected, indicating that the catalytic activity of HDAC3 is not the mediator of toxicity. Our findings shed light on the molecular mechanisms underlying MECP2 duplication syndrome and call for a re-evaluation of the precise biological role played by corepressor recruitment.


Asunto(s)
Expresión Génica , Histona Desacetilasas/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/toxicidad , Animales , Proteínas Co-Represoras/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/genética , Técnicas de Inactivación de Genes , Histona Desacetilasas/genética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Ratones , Mutación , Enfermedades del Sistema Nervioso/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Dominios Proteicos , Proteínas tau/metabolismo
5.
Cell Rep ; 24(9): 2213-2220, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157418

RESUMEN

MeCP2 is a nuclear protein that is mutated in the severe neurological disorder Rett syndrome (RTT). The ability to target ß-galactosidase to the nucleus was previously used to identify a conserved nuclear localization signal (NLS) in MeCP2 that interacts with the nuclear import factors KPNA3 and KPNA4. Here, we report that nuclear localization of MeCP2 does not depend on its NLS. Instead, our data reveal that an intact methyl-CpG binding domain (MBD) is sufficient for nuclear localization, suggesting that MeCP2 can be retained in the nucleus by its affinity for DNA. Consistent with these findings, we demonstrate that disease progression in a mouse model of RTT is unaffected by an inactivating mutation in the NLS of MeCP2. Taken together, our work reveals an unexpected redundancy between functional domains of MeCP2 in targeting this protein to the nucleus, potentially explaining why NLS-inactivating mutations are rarely associated with disease.


Asunto(s)
ADN/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Señales de Localización Nuclear/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Islas de CpG , ADN/genética , Modelos Animales de Enfermedad , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Síndrome de Rett/metabolismo , alfa Carioferinas/metabolismo
6.
Hum Mol Genet ; 27(14): 2531-2545, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29718204

RESUMEN

Most missense mutations causing Rett syndrome (RTT) affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterized domains. We studied the molecular consequences of four of these 'non-canonical' mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of RTT. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilize these mutant proteins may be of therapeutic value.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Proteínas Represoras/genética , Síndrome de Rett/genética , Animales , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Mutación Missense/genética , Neuronas/patología , Síndrome de Rett/patología
7.
Nature ; 550(7676): 398-401, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019980

RESUMEN

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Asunto(s)
Prueba de Complementación Genética , Terapia Genética/métodos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Eliminación de Secuencia , Células 3T3 , Animales , Encéfalo/metabolismo , ADN/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Mutación Missense , Fenotipo , Dominios Proteicos/genética , Estabilidad Proteica , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Transducción Genética
8.
Hum Mol Genet ; 25(20): 4389-4404, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173151

RESUMEN

Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Fenotipo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Especificidad de Órganos , Síndrome de Rett/genética
9.
Neurosci Res ; 105: 28-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26476268

RESUMEN

Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5.


Asunto(s)
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Pirofosfatasas/metabolismo , Síndrome de Rett/metabolismo , Animales , Glicosilación , Proteína 2 de Unión a Metil-CpG/genética , Ratones Mutantes
10.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26647311

RESUMEN

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Asunto(s)
Alelos , Proteína 2 de Unión a Metil-CpG/genética , Mutación Missense , Síndrome de Rett/genética , Síndrome de Rett/patología , Sustitución de Aminoácidos , Animales , ADN/genética , ADN/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Transgénicos , Modelos Moleculares , Fenotipo , Unión Proteica , Síndrome de Rett/metabolismo , Síndrome de Rett/mortalidad , Índice de Severidad de la Enfermedad , Transducción de Señal , Análisis de Supervivencia
11.
Artículo en Inglés | MEDLINE | ID: mdl-25170345

RESUMEN

BACKGROUND: Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. RESULTS: Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2 (-/y) ) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2 (-/y) and Mecp2 (wt) mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2 (-/y) mice. CONCLUSIONS: MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.

12.
Neurobiol Dis ; 68: 66-77, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769161

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Asunto(s)
Lesiones Encefálicas/etiología , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Estrés Oxidativo/fisiología , Síndrome de Rett/complicaciones , Síndrome de Rett/genética , Aldehídos/metabolismo , Análisis de Varianza , Animales , Ácido Araquidónico/metabolismo , Lesiones Encefálicas/sangre , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Isoprostanos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangre
13.
Nat Neurosci ; 16(7): 898-902, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770565

RESUMEN

Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the MECP2 gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 'bridge' between the NCoR/SMRT co-repressors and chromatin.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Síndrome de Rett/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Proteínas Fluorescentes Verdes/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/genética , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología
14.
Dis Model Mech ; 5(6): 733-45, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23115203

RESUMEN

In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.


Asunto(s)
Síndrome de Rett/patología , Investigación Biomédica Traslacional , Animales , Congresos como Asunto , Modelos Animales de Enfermedad , Guías como Asunto , Humanos , Informe de Investigación , Síndrome de Rett/genética
15.
Stem Cells ; 30(10): 2128-39, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22865604

RESUMEN

Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.


Asunto(s)
Encéfalo/metabolismo , Tamaño del Núcleo Celular/genética , Células Madre Embrionarias/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , ARN Mensajero/biosíntesis , Síndrome de Rett/metabolismo , Animales , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Madre Embrionarias/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Humanos , Lentivirus , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Noqueados , Neuronas/patología , Síndrome de Rett/genética , Síndrome de Rett/patología , Transcripción Genética , Transfección
16.
Proc Natl Acad Sci U S A ; 109(35): 14230-5, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891354

RESUMEN

The functional relevance of brain-derived neurotrophic factor (BDNF) is beginning to be well appreciated not only in mice, but also in humans. Because reduced levels typically correlate with impaired neuronal function, increasing BDNF levels with well-tolerated drugs diffusing into the central nervous system may help in ameliorating functional deficits. With this objective in mind, we used the sphingosine-1 phosphate receptor agonist fingolimod, a drug that crosses the blood-brain barrier. In addition, fingolimod has recently been introduced as the first oral treatment for multiple sclerosis. In cultured neurons, fingolimod increases BDNF levels and counteracts NMDA-induced neuronal death in a BDNF-dependent manner. Ongoing synaptic activity and MAPK signaling is required for fingolimod-induced BDNF increase, a pathway that can also be activated in vivo by systemic fingolimod administration. Mice lacking Mecp2, a gene frequently mutated in Rett syndrome, show decreased levels of BDNF, and fingolimod administration was found to partially rescue these levels as well as the size of the striatum, a volumetric sensor of BDNF signaling in rodents. These changes correlate with increased locomotor activity of the Mecp2-deficient animals, suggesting that fingolimod may improve the functional output of the nervous system, in addition to its well-documented effects on lymphocyte egress from lymph nodes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/agonistas , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/metabolismo , Esfingosina/análogos & derivados , Animales , Astrocitos/citología , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , N-Metilaspartato/toxicidad , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Embarazo , Síndrome de Rett/genética , Esfingosina/farmacología
17.
Hum Mol Genet ; 21(17): 3806-14, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22653753

RESUMEN

Rett Syndrome is a neurological disorder caused by mutations in the X-linked MECP2 gene. Mouse models where Mecp2 is inactivated or mutated recapitulate several features of the disorder and have demonstrated a requirement for the protein to ensure brain function in adult mice. We deleted the Mecp2 gene in ~80% of brain cells at three postnatal ages to determine whether the need for MeCP2 varies with age. Inactivation at all three time points induced Rett-like phenotypes and caused premature death of the animals. We find two threshold ages beyond which the requirement for MeCP2 markedly increases in stringency. The earlier threshold (8-14 weeks), when inactivated mice develop symptoms, represents early adulthood in the mouse and coincides with the period when Mecp2-null mice exhibit terminal symptoms. Unexpectedly, we identified a later age threshold (30-45 weeks) beyond which an 80% reduction in MeCP2 is incompatible with life. This finding suggests an enhanced role for MeCP2 in the aging brain.


Asunto(s)
Envejecimiento/genética , Silenciador del Gen , Proteína 2 de Unión a Metil-CpG/genética , Envejecimiento/efectos de los fármacos , Animales , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Sitios Genéticos/genética , Aprendizaje/efectos de los fármacos , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fenotipo , Recombinación Genética/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Análisis de Supervivencia , Tamoxifeno/farmacología
18.
Brain ; 135(Pt 9): 2699-710, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22525157

RESUMEN

Rett syndrome is a neurological disorder caused by mutation of the X-linked MECP2 gene. Mice lacking functional Mecp2 display a spectrum of Rett syndrome-like signs, including disturbances in motor function and abnormal patterns of breathing, accompanied by structural defects in central motor areas and the brainstem. Although routinely classified as a neurodevelopmental disorder, many aspects of the mouse phenotype can be effectively reversed by activation of a quiescent Mecp2 gene in adults. This suggests that absence of Mecp2 during brain development does not irreversibly compromise brain function. It is conceivable, however, that deep-seated neurological defects persist in mice rescued by late activation of Mecp2. To test this possibility, we have quantitatively analysed structural and functional plasticity of the rescued adult male mouse brain. Activation of Mecp2 in ∼70% of neurons reversed many morphological defects in the motor cortex, including neuronal size and dendritic complexity. Restoration of Mecp2 expression was also accompanied by a significant improvement in respiratory and sensory-motor functions, including breathing pattern, grip strength, balance beam and rotarod performance. Our findings sustain the view that MeCP2 does not play a pivotal role in brain development, but may instead be required to maintain full neurological function once development is complete.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/patología , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/patología , Fenotipo , Síndrome de Rett/genética , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Silenciador del Gen , Fuerza de la Mano/fisiología , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Prueba de Desempeño de Rotación con Aceleración Constante
19.
Annu Rev Cell Dev Biol ; 27: 631-52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21721946

RESUMEN

Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively. This review considers several key questions and attempts to evaluate the current state of evidence. For example, is MeCP2 just a methyl-CpG binding protein? Is it a multifunctional protein or primarily a transcriptional repressor? We also consider whether MeCP2, as a chromosome-binding protein, acts at specific sites within the genome or more globally, and in which cell types it is functionally important. Finally, we consider two alternative views of MeCP2 in the brain: as a regulator of brain development or as a factor that helps maintain neuronal/glial function.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Islas de CpG , Metilación de ADN , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
20.
Genome Res ; 21(7): 1074-86, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21628449

RESUMEN

Human and mouse genomes contain a similar number of CpG islands (CGIs), which are discrete CpG-rich DNA sequences associated with transcription start sites. In both species, ∼50% of all CGIs are remote from annotated promoters but, nevertheless, often have promoter-like features. To determine the role of CGI methylation in cell differentiation, we analyzed DNA methylation at a comprehensive CGI set in cells of the mouse hematopoietic lineage. Using a method that potentially detects ∼33% of genomic CpGs in the methylated state, we found that large differences in gene expression were accompanied by surprisingly few DNA methylation changes. There were, however, many DNA methylation differences between hematopoietic cells and a distantly related tissue, brain. Altered DNA methylation in the immune system occurred predominantly at CGIs within gene bodies, which have the properties of cell type-restricted promoters, but infrequently at annotated gene promoters or CGI flanking sequences (CGI "shores"). Unexpectedly, elevated intragenic CGI methylation correlated with silencing of the associated gene. Differentially methylated intragenic CGIs tended to lack H3K4me3 and associate with a transcriptionally repressive environment regardless of methylation state. Our results indicate that DNA methylation changes play a relatively minor role in the late stages of differentiation and suggest that intragenic CGIs represent regulatory sites of differential gene expression during the early stages of lineage specification.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Sistema Inmunológico/metabolismo , Animales , Linfocitos B/metabolismo , Diferenciación Celular/genética , Linaje de la Célula , Mapeo Cromosómico , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Genoma , Sistema Hematopoyético/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Sistema Inmunológico/citología , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Linfocitos T Colaboradores-Inductores/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA