Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Drug Deliv Transl Res ; 14(8): 2032-2040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837116

RESUMEN

Drug delivery technology has advanced significantly over >50 years, and has produced remarkable innovation, countless publications and conferences, and generations of talented and creative scientists. However, a critical review of the current state-of-the-art reveals that the translation of clever and sophisticated drug delivery technologies into products, which satisfy important, unmet medical needs and have been approved by the regulatory agencies, has - given the investment made in terms of time and money - been relatively limited. Here, this point of view is illustrated using a case study of technology for drug delivery into and through the skin and aims:  to examine the historical development of this field and the current state-of-the-art;  to understand why the translation of drug delivery technologies into products that improve clinical outcomes has been quite slow and inefficient; and  to suggest how the impact of technology may be increased and the process of concept to approved product accelerated.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Piel , Humanos , Piel/metabolismo , Animales , Absorción Cutánea , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química
3.
J Control Release ; 368: 797-807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350493

RESUMEN

Tracking drug disposition in the skin in a non-destructive and at least semi-quantitative fashion is a relevant objective for the assessment of local (cutaneous) bioavailability. Confocal Raman spectroscopy has been shown potentially useful in this regard and, importantly, recent advances have enabled the presence of applied chemicals in the viable epidermis below the stratum corneum (SC) to be determined without ambiguity and having addressed the challenges of (a) background signals from endogenous species and noise and (b) signal attenuation due to absorption and scattering. This study aimed to confirm these observations using a different vibrational spectroscopy approach - specifically, stimulated Raman scattering (SRS) microscopy - and the more conventional in vitro skin penetration test (IVPT). SRS is a nonlinear optical imaging technique which enables more precise location of the skin surface and enhanced skin depth resolution relative to confocal Raman microscopy. The method can also probe larger areas of the sample under investigation and identify the localization of the permeating chemical in specific structural components of the skin. Here, SRS was shown capable of tracking the uptake and distribution of 4-cyanophenol (CP), the same model compound used in the recent confocal Raman investigation, at depths beyond the SC following skin treatment with different vehicles and for different times. The SRS results correlated well with those from the confocal Raman experiments, and both were consistent with independent IVPT measurements. Acquired images clearly delineated CP preference for the intercellular lipid layers of the SC relative to the corneocytes. The stage is now set to apply these and other correlative techniques to examine commercial drug products.


Asunto(s)
Epidermis , Piel , Piel/metabolismo , Epidermis/metabolismo , Absorción Cutánea , Microscopía Confocal/métodos , Microscopía Óptica no Lineal , Espectrometría Raman/métodos
4.
Mol Pharm ; 21(1): 234-244, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060844

RESUMEN

Assessing drug disposition in the skin after the application of a topical formulation is difficult. It is hypothesized that reverse iontophoresis (RI), which can extract charged/polar molecules for monitoring purposes, may provide a noninvasive approach for the assessment of local drug bioavailability. The passive and RI extraction of salicylic acid (SA) and nicotine (NIC) from porcine skin in vitro was assessed after a simple solution of the former and a transdermal patch of the latter had been applied for 24 and 8 h, respectively. Immediately after this "passive skin loading", the amount of drug in the stratum corneum (SC) and "viable" tissue (VT) was measured either (a) after tape-stripping and subsequent solvent extraction of both skin layers or (b) following RI extraction over 4 h. Parallel experiments were then performed in vivo in healthy volunteers; in this case, the VT was not sampled and the skin loading period for NIC was only 4 h. RI extraction of both drugs was significantly higher (in vitro and in vivo) than that achieved passively, and the cumulative RI extraction profiles as a function of time were mathematically analyzed using a straightforward compartmental model. Best-fit estimates of drug amounts in the SC and VT (ASC,0 and AVT,0, respectively) at the end of "loading" and two first-order rate constants describing transfer between the model compartments were then determined. The in vitro predictions of ASC,0 and AVT,0 were in excellent agreement with the experimental results, as was the value of the former in vivo. The rate constants derived from the in vitro and in vivo results were also similar. In summary, the results provide proof-of-concept that the RI method has the potential to noninvasively assess relevant metrics of drug bioavailability in the skin.


Asunto(s)
Iontoforesis , Piel , Porcinos , Animales , Humanos , Iontoforesis/métodos , Disponibilidad Biológica , Piel/metabolismo , Absorción Cutánea , Epidermis
5.
J Control Release ; 364: 79-89, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858627

RESUMEN

A correlative methodology for label-free chemical imaging of soft tissue has been developed, combining non-linear optical spectroscopies and mass spectrometry to achieve sub-micron spatial resolution and critically improved drug detection sensitivity. The approach was applied to visualise the kinetics of drug reservoir formation within human skin following in vitro topical treatment with a commercial diclofenac gel. Non-destructive optical spectroscopic techniques, namely stimulated Raman scattering, second harmonic generation and two photon fluorescence microscopies, were used to provide chemical and structural contrast. The same tissue sections were subsequently analysed by secondary ion mass spectrometry, which offered higher sensitivity for diclofenac detection throughout the epidermis and dermis. A method was developed to combine the optical and mass spectrometric datasets using image registration techniques. The label-free, high-resolution visualisation of tissue structure coupled with sensitive chemical detection offers a powerful method for drug biodistribution studies in the skin that impact directly on topical pharmaceutical product development.


Asunto(s)
Diclofenaco , Piel , Humanos , Distribución Tisular , Espectrometría Raman/métodos , Espectrometría de Masas
6.
Mol Pharm ; 20(11): 5910-5920, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801410

RESUMEN

Confocal Raman spectroscopy is being assessed as a tool with which to quantify the rate and extent of drug uptake to and its clearance from target sites of action within the viable epidermis below the skin's stratum corneum (SC) barrier. The objective of this research was to confirm that Raman can interrogate drug disposition within the living layers of the skin (where many topical drugs elicit their pharmacological effects) and to identify procedures by which Raman signal attenuation with increasing skin depth may be corrected and normalized so that metrics descriptive of topical bioavailability may be identified. It was first shown in experiments on skin cross-sections parallel to the skin surface that the amide I signal, originating primarily from keratin, was quite constant with depth into the skin and could be used to correct for signal attenuation when confocal Raman data were acquired in a "top-down" fashion. Then, using 4-cyanophenol (CP) as a model skin penetrant with a strong Raman-active C≡N functionality, a series of uptake and clearance experiments, performed as a function of time, demonstrated clearly that normalized spectroscopic data were able to detect the penetrant to at least 40-80 µm into the skin and to distinguish the disposition of CP from different vehicles. Metrics related to local bioavailability (and potentially bioequivalence) included areas under the normalized C≡N signal versus depth profiles and elimination rate constants deduced post-removal of the formulations. Finally, Raman measurements were made with an approved dermatological drug, crisaborole, for which delivery from a fully saturated formulation into the skin layers just below the SC was detectable.


Asunto(s)
Absorción Cutánea , Espectrometría Raman , Espectrometría Raman/métodos , Piel/metabolismo , Epidermis/metabolismo , Disponibilidad Biológica , Microscopía Confocal/métodos
7.
RSC Adv ; 13(17): 11261-11268, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37057274

RESUMEN

Plant metabolic profiling can provide a wealth of information regarding the biochemical status of the organism, but sample acquisition typically requires an invasive and/or destructive extraction process. Reverse iontophoresis (RI) imposes a small electric field across a biological membrane to substantially enhance the transport of charged and polar compounds and has been employed, in particular, to extract biomarkers of interest across human skin. The objective of this work was to examine the capability of RI to sample phytochemicals in a minimally invasive fashion in fructo (i.e., from the intact fruit). RI was principally used to extract a model, bioactive compound - specifically, ellagic acid - from the fruit peel of Punica granatum L. The RI sampling protocol was refined using isolated peel, and a number of experimental factors were examined and optimised, including preparation of the peel samples, the current intensity applied and the pH of the medium into which samples were collected. The most favourable conditions (3 mA current for a period of 1 hour, into a buffer at pH 7.4) were then applied to the successful RI extraction of ellagic acid from intact pomegranates. Multiple additional phytochemicals were also extracted and identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). A successful proof-of-concept has been achieved, demonstrating the capability to non-destructively extract phytochemicals of interest from intact fruit.

8.
Mol Pharm ; 20(5): 2527-2535, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37053523

RESUMEN

Evaluation of the bioavailability of drugs intended to act within the skin following the application of complex topical products requires the application of multiple experimental tools, which must be quantitative, validated, and, ideally and ultimately, sufficiently minimally invasive to permit use in vivo. The objective here is to show that both infrared (IR) and Raman spectroscopies can assess the uptake of a chemical into the stratum corneum (SC) that correlates directly with its quantification by the adhesive tape-stripping method. Experiments were performed ex vivo using excised porcine skin and measured chemical disposition in the SC as functions of application time and formulation composition. The quantity of chemicals in the SC removed on each tape-strip was determined from the individually measured IR and Raman signal intensities of a specific molecular vibration at a frequency where the skin is spectroscopically silent and by a subsequent conventional extraction and chromatographic analysis. Correlations between the spectroscopic results and the chemical quantification on the tape-strips were good, and the effects of longer application times and the use of different vehicles were clearly delineated by the different measurement techniques. Based on this initial investigation, it is now possible to explore the extent to which the spectroscopic approach (and Raman in particular) may be used to interrogate chemical disposition deeper in the skin and beyond the SC.


Asunto(s)
Piel , Vibración , Animales , Porcinos , Piel/metabolismo , Epidermis , Absorción Cutánea , Espectrometría Raman
9.
Phytochem Anal ; 34(4): 408-413, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36971356

RESUMEN

For the commercial-scale isolation of phytochemicals, a suitable plant biomass source (including species, origin, growing season, etc.) must be identified, and frequent analytical verification is required to ensure that the phytochemicals are present at predefined minimum threshold concentrations. While the latter are typically assessed in the laboratory, a more efficient and less resource-intensive approach would involve non-destructive and environmentally friendly measurements in situ. Reverse iontophoretic (RI) sampling offers a potential solution to this challenge. OBJECTIVE: We aimed to demonstrate the non-destructive, RI sampling of phytochemicals of interest from biomass from four different sources. MATERIALS AND METHODS: RI experiments were performed in side-by-side diffusion cells using a current density of 0.5 mA/cm2 , for a predetermined time in a defined pH environment, using (1) fresh leaves from Mangifera indica and Centella asiatica and (2) isolated peel from Punica granatum and Citrus sinensis. RESULTS: Mangiferin, madecassoside, punicalagin, ellagic acid, and hesperidin were extracted from the different biomasses by RI. The amounts extracted ranged from 0.03 mg/100 mg of biomass for the cathodal extraction of madecassoside to 0.63 mg/100 mg of biomass for the anodal extraction of punicalagin. A linear relationship (r2  = 0.73) between the RI-extracted quantities of punicalagin and those determined using conventional methods was demonstrated. CONCLUSION: The non-destructive, in situ measurement of phytochemical levels by RI represents a feasible approach for timing the harvesting process.


Asunto(s)
Centella , Citrus sinensis , Mangifera , Granada (Fruta) , Extractos Vegetales , Fitoquímicos
10.
Mol Pharm ; 19(11): 4010-4016, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36066005

RESUMEN

Medicines designed to deliver the active pharmaceutical ingredient either into or through the skin─often referred to as topicals and transdermals, respectively─are generally considered to be complex drug products. A particular challenge faced by these formulations is identifying a suitable method (ideally, in terms of specificity, accuracy, precision, and robustness) or combination of methods with which to assess the amount and rate of drug delivery to the target site. Significant research currently aims to identify and validate relevant and minimally invasive techniques that can be used to quantify both the levels of the drug attained within different parts of the skin and the kinetics with which the drug is taken up into the skin and cleared therefrom into the systemic circulation. Here, the application of confocal Raman microspectroscopy and imaging to interrogate events integral to the performance of topical and transdermal drug products at the formulation-skin interface is illustrated. Visualization, depth slicing, and profiling are used (a) to elucidate key chemical properties of both the delivery system and the skin that have impact on their interaction and the manner in which drug transfer from one to the other may occur, (b) for the transformation of a drug product from that manufactured into a residual phase post-application and inunction into the skin (including the potential for important changes in solubility of the active compound), and (c) for drug absorption into the skin and its subsequent '"clearance" into deeper layers and beyond. Overall, the Raman tools described offer both qualitative and potentially semi-quantitative insights into topical and transdermal drug product performance and provide information useful for formulation improvement and optimization.


Asunto(s)
Absorción Cutánea , Piel , Piel/metabolismo , Administración Cutánea , Sistemas de Liberación de Medicamentos , Espectrometría Raman/métodos , Preparaciones Farmacéuticas/metabolismo
12.
Int J Pharm ; 614: 121469, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35031414

RESUMEN

An important question in the development of a dermatological drug product is whether a target concentration has been achieved in, for example, the viable epidermis following topical administration. When attempting to address this challenge, it is essential to consider the role of excipients in the formulation that may influence drug partitioning and diffusion in the different layers of the skin. The objective, therefore, was to correlate, in human subjects, the skin pharmacokinetics of diclofenac (specifically, its uptake into and clearance from the stratum corneum (SC)) from an approved drug product (Voltaren® medicated plaster) with the in vivo co-uptake of two key excipients, namely propylene glycol and butylene glycol. SC sampling was used to assess diclofenac input into the skin during patch application, and its subsequent clearance post-removal of the delivery system. In parallel the uptake of the two glycol excipients was also measured. Drug and excipient amounts in the SC increased with time of application up to 6 h and, for diclofenac, no further increase was observed when the administration was prolonged to 12 h. When the plaster was removed after 6 h of wear, diclofenac cleared relatively slowly from the SC suggesting that drug binding with a slow off-rate had occurred. The results indicate that the optimisation of drug delivery from a topical formulation must take into account the disposition of key excipients and their impact on dermato-pharmacokinetics in general.


Asunto(s)
Diclofenaco , Excipientes , Absorción Cutánea , Administración Cutánea , Diclofenaco/farmacocinética , Excipientes/farmacocinética , Humanos , Piel/metabolismo
13.
Drug Deliv Transl Res ; 12(4): 851-861, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599470

RESUMEN

Predicting the dermal bioavailability of topically delivered drugs is challenging. In this work, minimally invasive stratum corneum (SC) sampling was used to quantify the delivery of betamethasone valerate (BMV) into the viable skin. Betnovate® cream (0.1% w/w BMV) was applied at three doses (2, 5, and 10 mg cm-2) to the ventral forearms of 12 healthy volunteers. The mass of drug in the SC was measured using a validated tape-stripping method (a) after a 4-h "uptake" period, and (b) following a 6-h "clearance" period subsequent to cream removal. Concomitantly, the skin blanching responses to the same doses were assessed with a chromameter over 22 h post-application. BMV uptake into the SC was significantly higher for the 5 mg cm-2 dose compared to those of 2 and 10 mg cm-2. In all cases, ~30% of the drug in the SC at the end of the uptake period was cleared in the subsequent 6 h. From the SC sampling data, the average drug flux into the viable epidermis and its first-order elimination rate constant from the SC were estimated as 4 ng cm-2 h-1 and 0.07 h-1, respectively. In contrast, skin blanching results were highly variable and insensitive to the dose of cream applied. The SC sampling method was able to detect a 50% difference between two applied doses with 80% power; detection of a 20% difference would require a larger sample size. SC sampling enabled quantitative metrics describing corticosteroid delivery to the viable epidermis to be determined.


Asunto(s)
Glucocorticoides , Absorción Cutánea , Valerato de Betametasona , Epidermis , Humanos , Piel/metabolismo
14.
Mol Pharm ; 18(7): 2714-2723, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34124907

RESUMEN

Prediction of skin absorption and local bioavailability from topical formulations remains a difficult task. An important challenge in forecasting topical bioavailability is the limited information available about local and systemic drug concentrations post application of topical drug products. Commercially available transdermal patches, such as Scopoderm (Novartis Consumer Health UK), offer an opportunity to test these experimental approaches as systemic pharmacokinetic data are available with which to validate a predictive model. The long-term research aim, therefore, is to develop a physiologically based pharmacokinetic model (PBPK) to predict the dermal absorption and disposition of actives included in complex dermatological products. This work explored whether in vitro release and skin permeation tests (IVRT and IVPT, respectively), and in vitro and in vivo stratum corneum (SC) and viable tissue (VT) sampling data, can provide a satisfactory description of drug "input rate" into the skin and subsequently into the systemic circulation. In vitro release and skin permeation results for scopolamine were consistent with the previously reported performance of the commercial patch investigated. New skin sampling data on the dermatopharmacokinetics (DPK) of scopolamine also accurately reflected the rapid delivery of a "priming" dose from the patch adhesive, superimposed on a slower, rate-controlled input from the drug reservoir. The scopolamine concentration versus time profiles in SC and VT skin compartments, in vitro and in vivo, taken together with IVRT release and IVPT penetration kinetics, reflect the input rate and drug delivery specifications of the Scopoderm transdermal patch and reveal the importance of skin binding with respect to local drug disposition. Further data analysis and skin PK modeling are indicated to further refine and develop the approach outlined.


Asunto(s)
Sistemas de Liberación de Medicamentos , Modelos Teóricos , Escopolamina/farmacocinética , Absorción Cutánea , Piel/metabolismo , Parche Transdérmico/estadística & datos numéricos , Administración Cutánea , Adulto , Disponibilidad Biológica , Femenino , Humanos , Masculino , Permeabilidad , Escopolamina/administración & dosificación
15.
Pharmaceutics ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35056976

RESUMEN

Non-invasive methods for early diagnosis of skin cancer are highly valued. One possible approach is to monitor relevant biomarkers such as tryptophan (Trp) and kynurenine (Kyn), on the skin surface. The primary aim of this in vitro investigation was, therefore, to examine whether reverse iontophoresis (RI) can enhance the extraction of Trp and Kyn, and to demonstrate how the Trp/Kyn ratio acquired from the skin surface reflects that in the epidermal tissue. The study also explored whether the pH of the receiver medium impacted on extraction efficiency, and assessed the suitability of a bicontinuous cubic liquid crystal as an alternative to a simple buffer solution for this purpose. RI substantially enhanced the extraction of Trp and Kyn, in particular towards the cathode. The Trp/Kyn ratio obtained on the surface matched that in the viable skin. Increasing the receiver solution pH from 4 to 9 improved extraction of both analytes, but did not significantly change the Trp/Kyn ratio. RI extraction of Trp and Kyn into the cubic liquid crystal was comparable to that achieved with simple aqueous receiver solutions. We conclude that RI offers a potential for non-invasive sampling of low-molecular weight biomarkers and further investigations in vivo are therefore warranted.

16.
Drug Deliv Transl Res ; 11(2): 729-740, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33164164

RESUMEN

For topical drug products that target sites of action in the viable epidermal and/or upper dermal compartment of the skin, the local concentration profiles have proven difficult to quantify because drug clearance from the viable cutaneous tissue is not well characterised. Without such knowledge, of course, it is difficult-if not impossible-to predict a priori whether and over what time frame a topical formulation will permit an effective concentration of drug within the skin 'compartment' to be achieved. Here, we test the hypothesis that valuable information about drug disposition, and specifically its clearance, in this experimentally difficult-to-access compartment (at least, in vivo) can be derived from available systemic pharmacokinetic data for drugs administered via transdermal delivery systems. A multiple regression analysis was undertaken to determine the best-fit empirical correlation relating clearance from the skin to known or easily calculable drug properties. It was possible, in this way, to demonstrate a clear relationship between drug clearance from the skin and key physical chemical properties of the drug (molecular weight, log P and topological polar surface area). It was further demonstrated that values predicted by the model correlated well with those derived from in vitro skin experiments.


Asunto(s)
Absorción Cutánea , Piel , Administración Cutánea , Sistemas de Liberación de Medicamentos , Vías de Eliminación de Fármacos , Tasa de Depuración Metabólica , Piel/metabolismo
17.
Br J Clin Pharmacol ; 86(12): 2530-2534, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31426120

RESUMEN

Regulatory science underpins the objective evaluation of medicinal products. It is therefore imperative that regulatory science and expertise remain at the cutting edge so that innovations of ever-increasing complexity are translated safely and swiftly into effective, high-quality therapies. We undertook a comprehensive examination of the evolution of science and technology impacting on medicinal product evaluation over the next 5-10 years and this horizon-scanning activity was complemented by extensive stakeholder interviews, resulting in a number of significant recommendations. Highlighted in particular was the need for expertise and regulatory science research to fill knowledge gaps in both more fundamental, longer-term research, with respect to technological and product-specific challenges. A model is proposed to realise these objectives in Europe, comprising a synergistic relationship between the European Medicines Agency, the European Medicines Regulatory Network and academic research centres to establish a novel regulatory science and innovation platform.


Asunto(s)
Control de Medicamentos y Narcóticos , Conocimiento , Europa (Continente) , Humanos
19.
Mol Pharm ; 16(6): 2808-2816, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31070927

RESUMEN

The opioids buprenorphine hydrochloride (BUP) and naltrexone hydrochloride (NTX) show promise as a combination treatment for addiction, but no means of delivering the two compounds in one medicine currently exist. In this paper, we report sufficient input rates of both these drugs from one iontophoretic transdermal drug delivery system. Experiments were performed using dermatomed pig skin mounted in glass side-bi-side cells. BUP and NTX were iontophoretically delivered together from the anode using direct constant current from Ag/AgCl electrodes. The transdermal drug fluxes and the masses of drugs in both the stratum corneum and the underlying epidermis/dermis were measured. The apparent electroosmotic flow was quantified using a neutral marker (acetaminophen). The effects of donor composition (drug concentration/molar fraction and pH), current density and profile, and the choice of receptor solution were assessed. Iontophoresis dramatically increased the flux of both drugs compared to passive control values. Target fluxes (calculated from literature clearance values and required therapeutic plasma concentrations) were greatly exceeded for NTX and were met for BUP. The latter accumulated in the skin and suppressed electroosmotic flow, inhibiting both its own flux and that of NTX. NTX, in turn, negatively influenced the flux of BUP via co-ion competition. Lowering current density by increasing the delivery area resulted in increased electroosmotic flow but did not significantly affect current-normalized drug fluxes. Delivering the drugs from both electrodes and reversing the polarity for every 2 h did not increase the flux of either compound. In summary, during iontophoresis, BUP and NTX inhibited each other's flux by two distinct mechanisms. While the more complex behavior of BUP complicates the optimization of this drug combination, iontophoresis nevertheless appears to be a feasible approach for the controlled codelivery of NTX and BUP through the skin.


Asunto(s)
Buprenorfina/química , Sistemas de Liberación de Medicamentos/métodos , Naltrexona/química , Acetaminofén/química , Concentración de Iones de Hidrógeno , Iontoforesis
20.
BMJ Open ; 9(5): e026764, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133588

RESUMEN

OBJECTIVES: Society is confronted with the rapid emergence of innovation in science and technology. To manage this, horizon scanning is being adopted globally to identify, assess and prioritise innovations and trends at an early stage of their development. This enables decision-makers to be better informed and to prepare for change. The aim of this paper is to systematically identify and evaluate horizon scanning methodologies employed in the healthcare and biomedical fields. METHODS: A systematic literature review was performed using PubMed and Embase and was supplemented with grey literature searches (2008-2018). The principal methodologies used in horizon scanning were extracted. RESULTS: Approximately 100 articles were summarised in a literature map. The search revealed many examples of horizon scanning across disciplines. Challenges, such as the need to refine prioritisation criteria, manage uncertainty inherent in the findings and improve the dissemination of identified issues, have been highlighted. CONCLUSION: Horizon scanning, when performed appropriately, is a flexible and potentially reliable tool, with a wide variety of methods. Horizon scanning can inform and influence decision-making, through identifying opportunities and challenges, from an organisational to an international level. Further research to identify the most effective methodologies available would add depth to this landscape and enable the evolution of best practice to most efficiently anticipate novel developments and innovations.


Asunto(s)
Atención a la Salud/tendencias , Difusión de Innovaciones , Evaluación de la Tecnología Biomédica/tendencias , Toma de Decisiones , Humanos , Formulación de Políticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...