RESUMEN
Microsaccades, the tiny gaze relocations that occurr during fixation, have been linked to covert attention deployed degrees away from the center of gaze. However, the link between attention and microsaccades is deeper in that it also unfolds at the foveal scale. Here, we have examined the spatial grain of pre-microsaccadic attention across the 1° foveola. Through the use of high-precision eye-tracking and gaze-contingent display system that achieves arcminute precision in gaze localization, we have shown that the spotlight of attention at this scale can reach a strikingly high resolution, in the order of 0.17°. Further, when a microsaccade occurs, vision is modulated in a peculiar way across the foveola; whereas fine spatial vision is enhanced at the microsaccade goal location, it drops at the very center of gaze, where acuity is normally highest. These results reveal the finesse of the visuomotor system and of the interplay between eye movements and attention.
Asunto(s)
Movimientos Sacádicos , Percepción Visual , Movimientos Oculares , Visión Ocular , Atención , Fijación OcularRESUMEN
Exogenous attention, a powerful adaptive tool that quickly and involuntarily orients processing resources to salient stimuli, has traditionally been studied in the lower-resolution parafoveal and peripheral visual field.1-4 It is not known whether and how it operates across the 1° central fovea where visual resolution peaks.5,6 Here we investigated the dynamics of exogenous attention in the foveola. To circumvent the challenges posed by fixational eye movements at this scale, we used high-precision eye-tracking and gaze-contingent display control for retinal stabilization.7 High-acuity stimuli were briefly presented foveally at varying delays following an exogenous cue. Attended and unattended locations were just a few arcminutes away from the preferred locus of fixation. Our results show that for short temporal delays, observers' ability to discriminate fine detail is enhanced at the cued location. This enhancement is highly localized and does not extend to the nearby locations only 16' away. On a longer timescale, instead, we report an inverse effect: paradoxically, acuity is sharper at the unattended locations, resembling the phenomenon of inhibition of return at much larger eccentricities.8-10 Although exogenous attention represents a mechanism for low-cost monitoring of the environment in the extrafoveal space, these findings show that, in the foveola, it transiently modulates vision of detail with a high degree of resolution. Together with inhibition of return, it may aid visual exploration of complex foveal stimuli.11.