RESUMEN
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
RESUMEN
[This corrects the article DOI: 10.1016/j.isci.2024.109122.].
RESUMEN
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Asunto(s)
Proteína Fosfatasa 2C , Superóxido Dismutasa-1 , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Humanos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Línea Celular Tumoral , Leucemia/genética , Sistemas CRISPR-Cas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mutaciones Letales Sintéticas , MutaciónRESUMEN
OBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Asunto(s)
Autofagia , Glutaratos , Músculo Esquelético , Transducción de Señal , Animales , Ratones , Músculo Esquelético/metabolismo , Masculino , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Caquexia/metabolismo , Femenino , Sirtuina 1/metabolismo , Sirtuina 1/genética , Ratones Endogámicos C57BLRESUMEN
During aging, blood cell production becomes dominated by a limited number of variant hematopoietic stem cell (HSC) clones. Differentiated progeny of variant HSCs are thought to mediate the detrimental effects of such clonal hematopoiesis on organismal health, but the mechanisms are poorly understood. While somatic mutations in DNA methyltransferase 3A (DNMT3A) frequently drive clonal dominance, the aging milieu also likely contributes. Here, we examined in mice the interaction between high-fat diet (HFD) and reduced DNMT3A in hematopoietic cells; strikingly, this combination led to weight gain. HFD amplified pro-inflammatory pathways and upregulated inflammation-associated genes in mutant cells along a pro-myeloid trajectory. Aberrant DNA methylation during myeloid differentiation and in response to HFD led to pro-inflammatory activation and maintenance of stemness genes. These findings suggest that reduced DNMT3A in hematopoietic cells contributes to weight gain, inflammation, and metabolic dysfunction, highlighting a role for DNMT3A loss in the development of metabolic disorders.
RESUMEN
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
RESUMEN
DNA methylation deregulation at partially methylated domains (PMDs) represents an epigenetic signature of aging and cancer, yet the underlying molecular basis and resulting biological consequences remain unresolved. We report herein a mechanistic link between disrupted DNA methylation at PMDs and the spatial relocalization of H3K9me3-marked heterochromatin in aged hematopoietic stem and progenitor cells (HSPCs) or those with impaired DNA methylation. We uncover that TET2 modulates the spatial redistribution of H3K9me3-marked heterochromatin to mediate the upregulation of endogenous retroviruses (ERVs) and interferon-stimulated genes (ISGs), hence contributing to functional decline of aged HSPCs. TET2-deficient HSPCs retain perinuclear distribution of heterochromatin and exhibit age-related clonal expansion. Reverse transcriptase inhibitors suppress ERVs and ISGs expression, thereby restoring age-related defects in aged HSPCs. Collectively, our findings deepen the understanding of the functional interplay between DNA methylation and histone modifications, which is vital for maintaining heterochromatin function and safeguarding genome stability in stem cells.
Asunto(s)
Células Madre Hematopoyéticas , Heterocromatina , Heterocromatina/genética , Células Madre Hematopoyéticas/metabolismo , Metilación de ADN/genéticaRESUMEN
Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Animales , Humanos , Ratones , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Hematopoyéticas/metabolismoRESUMEN
DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.
Asunto(s)
Discapacidad Intelectual , Errores Innatos del Metabolismo , Obesidad Mórbida , Adipogénesis , Animales , ADN , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Discapacidad Intelectual/genética , RatonesRESUMEN
DNA methyltransferase 3a (DNMT3A) plays a crucial role during mammalian development. Two isoforms of DNMT3A are differentially expressed from stem cells to somatic tissues, but their individual functions remain largely uncharacterized. Here we report that the long isoform DNMT3A1, but not the short DNMT3A2, is essential for mouse postnatal development. DNMT3A1 binds to and regulates bivalent neurodevelopmental genes in the brain. Strikingly, Dnmt3a1 knockout perinatal lethality could be partially rescued by DNMT3A1 restoration in the nervous system. We further show that the intrinsically disordered N terminus of DNMT3A1 is required for normal development and DNA methylation at DNMT3A1-enriched regions. Mechanistically, a ubiquitin-interacting motif embedded in a putative α-helix within the N terminus binds to mono-ubiquitinated histone H2AK119, probably mediating recruitment of DNMT3A1 to Polycomb-regulated regions. These data demonstrate an isoform-specific role for DNMT3A1 in mouse postnatal development and reveal the N terminus as a necessary regulatory domain for DNMT3A1 chromatin occupancy and functions in the nervous system.
Asunto(s)
Metilasas de Modificación del ADN , Histonas , Animales , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Histonas/metabolismo , Ratones , Isoformas de ProteínasRESUMEN
Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Discapacidad Intelectual , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Germinativas/patología , Hematopoyesis/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , RatonesRESUMEN
IKAROS family zinc finger 1 (IKZF1) alterations represent a diverse group of genetic lesions that are associated with an increased risk of relapse in B-cell acute lymphoblastic leukemia. Due to the heterogeneity of concomitant lesions, it remains unclear how IKZF1 abnormalities directly affect cell function and therapy resistance, and whether their consideration as a prognostic indicator is valuable in improving outcome. CRISPR/Cas9 strategies were used to engineer multiple panels of isogeneic lymphoid leukemia cell lines with a spectrum of IKZF1 lesions to measure changes in chemosensitivity, gene expression, cell cycle, and in vivo engraftment that can be linked to loss of IKAROS protein. IKZF1 knockout and heterozygous null cells displayed relative resistance to a number of common therapies for B-cell acute lymphoblastic leukemia, including dexamethasone, asparaginase, and daunorubicin. Transcription profiling revealed a stem/myeloid cell-like phenotype and JAK/STAT upregulation after IKAROS loss. A CRISPR homology-directed repair strategy was also used to knock-in the dominant-negative IK6 isoform into the endogenous locus, and a similar drug resistance profile, with the exception of retained dexamethasone sensitivity, was observed. Interestingly, IKZF1 knockout and IK6 knock-in cells both have significantly increased sensitivity to cytarabine, likely owing to marked downregulation of SAMHD1 after IKZF1 knockout. Both types of IKZF1 lesions decreased the survival time of xenograft mice, with higher numbers of circulating blasts and increased organ infiltration. Given these findings, exact specification of IKZF1 status in patients may be a beneficial addition to risk stratification and could inform therapy.
Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Humanos , Factor de Transcripción Ikaros/genética , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , RecurrenciaRESUMEN
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor-/- knockout mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis, which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double Bcor-/-/Dnmt3a-/- knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL) characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119, macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and may help designing new rational treatments for patients suffering from this high-risk leukemia.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Leucemia Eritroblástica Aguda/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Anemia Macrocítica/genética , Anemia Macrocítica/patología , Animales , Médula Ósea/patología , Ciclo Celular/genética , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Células Eritroides/patología , Leucemia Eritroblástica Aguda/patología , Ratones , Ratones Noqueados , Transcriptoma/genéticaRESUMEN
DNA methyltransferase 3A (DNMT3A) is the most commonly mutated gene in clonal hematopoiesis (CH). Somatic DNMT3A mutations arise in hematopoietic stem cells (HSCs) many years before malignancies develop, but difficulties in comparing their impact before malignancy with wild-type cells have limited the understanding of their contributions to transformation. To circumvent this limitation, we derived normal and DNMT3A mutant lymphoblastoid cell lines from a germline mosaic individual in whom these cells co-existed for nearly 6 decades. Mutant cells dominated the blood system, but not other tissues. Deep sequencing revealed similar mutational burdens and signatures in normal and mutant clones, while epigenetic profiling uncovered the focal erosion of DNA methylation at oncogenic regulatory regions in mutant clones. These regions overlapped with those sensitive to DNMT3A loss after DNMT3A ablation in HSCs and in leukemia samples. These results suggest that DNMT3A maintains a conserved DNA methylation pattern, the erosion of which provides a distinct competitive advantage to hematopoietic cells.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Hematopoyesis , Células Clonales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Hematopoyesis/genética , Mutación/genéticaRESUMEN
BACKGROUND: Since 1995, Colorado has had a Title IV-E child welfare Stipend Program, most recently involving four universities in partnership with the Colorado Department of Human Services. OBJECTIVE: A ten-year cohort study was conducted to understand program graduates' experiences with organizational commitment, the impact of stipends on child welfare professional identity and desire to remain in the child welfare field. PARTICIPANTS AND METHODS: The mixed methods evaluation involved 245 stipend graduates from 2006 to 2016 from Bachelor of Social Work (BSW) and Master of Social Work (MSW) programs and included an online survey and focus groups. RESULTS: Results indicate stipend graduates remained in the workforce beyond payback periods, felt prepared for the job, appreciated the skills and networks gained from their programs, and expressed gratitude for the financial assistance. Graduates identified workforce factors including peer support, supervisor support, and mobility in the agency as key retention sources for remaining in child welfare.
Asunto(s)
Protección a la Infancia/psicología , Empleo/psicología , Satisfacción en el Trabajo , Lealtad del Personal , Estudiantes/psicología , Adolescente , Adulto , Estudios de Cohortes , Colorado , Femenino , Humanos , Masculino , Persona de Mediana Edad , Servicio Social/educación , Apoyo a la Formación Profesional , Universidades , Adulto JovenRESUMEN
Primary and acquired drug resistance imposes a major threat to achieving optimized clinical outcomes during cancer treatment. Aberrant changes in epigenetic modifications are closely involved in drug resistance of tumor cells. Using BET inhibitor (BETi) resistant leukemia cells as a model system, we demonstrated herein that genome-wide enhancer remodeling played a pivotal role in driving therapeutic resistance via compensational re-expression of pro-survival genes. Capitalizing on the CRISPR interference technology, we identified the second intron of IncRNA, PVT1, as a unique bona fide gained enhancer that restored MYC transcription independent of BRD4 recruitment in leukemia. A combined BETi and CDK7 inhibitor treatment abolished MYC transcription by impeding RNAPII loading without affecting PVT1-mediated chromatin looping at the MYC locus in BETi-resistant leukemia cells. Together, our findings have established the feasibility of targeting enhancer plasticity to overcome drug resistance associated with epigenetic therapies.
Asunto(s)
Leucemia Experimental/tratamiento farmacológico , Leucemia Experimental/genética , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Elementos de Facilitación Genéticos , Femenino , Genes myc/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Células Jurkat , Células K562 , Leucemia Experimental/metabolismo , Ratones , Modelos Genéticos , Fenilendiaminas/administración & dosificación , Pirimidinas/administración & dosificación , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , Quinasa Activadora de Quinasas Ciclina-DependientesRESUMEN
Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.
Asunto(s)
Transformación Celular Neoplásica/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Isocitrato Deshidrogenasa/genética , Mutación , Animales , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Secuenciación de Inmunoprecipitación de Cromatina , Metilación de ADN , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Metaboloma , Metabolómica/métodos , Ratones , Ratones NoqueadosRESUMEN
TET2 is among the most frequently mutated genes in hematological malignancies, as well as in healthy individuals with clonal hematopoiesis. Inflammatory stress is known to promote the expansion of Tet2-deficient hematopoietic stem cells, as well as the initiation of pre-leukemic conditions. Infection is one of the most frequent complications in hematological malignancies and antibiotics are commonly used to suppress infection-induced inflammation, but their application in TET2 mutation-associated cancers remained underexplored. In this study, we discovered that Tet2 depletion led to aberrant expansion of myeloid cells, which was correlated with elevated serum levels of pro-inflammatory cytokines at the pre-malignant stage. Antibiotics treatment suppressed the growth of Tet2-deficient myeloid and lymphoid tumor cells in vivo. Transcriptomic profiling further revealed significant changes in the expression of genes involved in the TNF-α signaling and other immunomodulatory pathways in antibiotics-treated tumor cells. Pharmacological inhibition of TNF-α signaling partially attenuated Tet2-deficient tumor cell growth in vivo. Therefore, our findings establish the feasibility of targeting pro-inflammatory pathways to curtail TET2 inactivation-associated hematological malignancies.
Asunto(s)
Antibacterianos/uso terapéutico , Proteínas de Unión al ADN/genética , Neoplasias Hematológicas/tratamiento farmacológico , Mutación con Pérdida de Función , Proteínas Proto-Oncogénicas/genética , Animales , Antibacterianos/farmacología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Citocinas/sangre , Dioxigenasas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Anciano , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Hidrazinas/farmacología , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteolisis , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Exportina 1RESUMEN
BACKGROUND: DNA methylation is a heritable epigenetic mark, enabling stable but reversible gene repression. In mammalian cells, DNA methyltransferases (DNMTs) are responsible for modifying cytosine to 5-methylcytosine (5mC), which can be further oxidized by the TET dioxygenases to ultimately cause DNA demethylation. However, the genome-wide cooperation and functions of these two families of proteins, especially at large under-methylated regions, called canyons, remain largely unknown. RESULTS: Here we demonstrate that DNMT3A and TET1 function in a complementary and competitive manner in mouse embryonic stem cells to mediate proper epigenetic landscapes and gene expression. The longer isoform of DNMT3A, DNMT3A1, exhibits significant enrichment at distal promoters and canyon edges, but is excluded from proximal promoters and canyons where TET1 shows prominent binding. Deletion of Tet1 increases DNMT3A1 binding capacity at and around genes with wild-type TET1 binding. However, deletion of Dnmt3a has a minor effect on TET1 binding on chromatin, indicating that TET1 may limit DNA methylation partially by protecting its targets from DNMT3A and establishing boundaries for DNA methylation. Local CpG density may determine their complementary binding patterns and therefore that the methylation landscape is encoded in the DNA sequence. Furthermore, DNMT3A and TET1 impact histone modifications which in turn regulate gene expression. In particular, they regulate Polycomb Repressive Complex 2 (PRC2)-mediated H3K27me3 enrichment to constrain gene expression from bivalent promoters. CONCLUSIONS: We conclude that DNMT3A and TET1 regulate the epigenome and gene expression at specific targets via their functional interplay.