RESUMEN
Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias Orofaríngeas , Humanos , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Canales de Calcio , Hiperplasia , Proteína 1 Inhibidora de la DiferenciaciónRESUMEN
Ca2+ entry via Ca2+ release-activated Ca2+ (CRAC) channels is a predominant mechanism of intracellular Ca2+ elevation in immune cells. Here we show the immunoregulatory role of CRAC channel components Orai1 and Orai2 in Group 2 innate lymphoid cells (ILC2s), that play crucial roles in the induction of type 2 inflammation. We find that blocking or genetic ablation of Orai1 and Orai2 downregulates ILC2 effector function and cytokine production, consequently ameliorating the development of ILC2-mediated airway inflammation in multiple murine models. Mechanistically, ILC2 metabolic and mitochondrial homeostasis are inhibited and lead to the upregulation of reactive oxygen species production. We confirm our findings in human ILC2s, as blocking Orai1 and Orai2 prevents the development of airway hyperreactivity in humanized mice. Our findings have a broad impact on the basic understanding of Ca2+ signaling in ILC2 biology, providing potential insights into the development of therapies for the treatment of allergic and atopic inflammatory diseases.
Asunto(s)
Asma , Inmunidad Innata , Ratones , Humanos , Animales , Linfocitos , Homeostasis , Inflamación , Proteína ORAI1/genéticaRESUMEN
Nuclear receptor coactivator 2 (Ncoa2) is a member of the Ncoa family of coactivators, and we previously showed that Ncoa2 regulates the differentiation of induced regulatory T cells. However, it remains unknown if Ncoa2 plays a role in CD8+ T-cell function. Here, we show that Ncoa2 promotes CD8+ T cell-mediated immune responses against tumors by stimulating T-cell activation via upregulating PGC-1α expression to enhance mitochondrial function. Mice deficient in Ncoa2 in T cells (Ncoa2fl/fl/CD4Cre) displayed defective immune responses against implanted MC38 tumors, which associated with significantly reduced tumor-infiltrating CD8+ T cells and decreased IFNγ production. Consistently, CD8+ T cells from Ncoa2fl/fl/CD4Cre mice failed to reject tumors after adoptive transfer into Rag1-/- mice. Further, in response to TCR stimulation, Ncoa2fl/fl/CD4Cre CD8+ T cells failed to increase mitochondrial mass, showed impaired oxidative phosphorylation, and had lower expression of PGC-1α, a master regulator of mitochondrial biogenesis and function. Mechanically, T-cell activation-induced phosphorylation of CREB triggered the recruitment of Ncoa2 to bind to enhancers, thus, stimulating PGC-1α expression. Forced expression of PGC-1α in Ncoa2fl/fl/CD4Cre CD8+ T cells restored mitochondrial function, T-cell activation, IFNγ production, and antitumor immunity. This work informs the development of Ncoa2-based therapies that modulate CD8+ T cell-mediated antitumor immune responses.
Asunto(s)
Mitocondrias , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Regulación hacia ArribaRESUMEN
T cell activation stimulates substantially increased protein synthesis activity to accumulate sufficient biomass for cell proliferation. The protein synthesis is fueled by the amino acids transported from the environment. Steroid nuclear receptor coactivator 2 (SRC2) is a member of a family of transcription coactivators. Here, we show that SRC2 recruited by c-Myc enhances CD4+ T cell activation to stimulate immune responses via upregulation of amino acid transporter Slc7a5. Mice deficient of SRC2 in T cells (SRC2fl/fl/CD4Cre) are resistant to the induction of experimental autoimmune encephalomyelitis (EAE) and susceptible to Citrobacter rodentium (C. rodentium) infection. Adoptive transfer of naive CD4+ T cells from SRC2fl/fl/CD4Cre mice fails to elicit EAE and colitis in Rag1/ recipients. Further, CD4+ T cells from SRC2fl/fl/CD4Cre mice display defective T cell proliferation, cytokine production, and differentiation both in vitro and in vivo. Mechanically, SRC2 functions as a coactivator to work together with c-Myc to stimulate the expression of amino acid transporter Slc7a5 required for T cell activation. Slc7a5 fails to be up-regulated in CD4+ T cells from SRC2fl/fl/CD4Cre mice, and forced expression of Slc7a5 rescues proliferation, cytokine production, and the ability of SRC2fl/fl/CD4Cre CD4+ T cells to induce EAE. Therefore, SRC2 is essential for CD4+ T cell activation and, thus, a potential drug target for controlling CD4+ T cell-mediated autoimmunity.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Linfocitos T , Animales , Ratones , Linfocitos T CD4-Positivos , Citocinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/metabolismo , Regulación hacia ArribaRESUMEN
RORγt is known to instruct the differentiation of T helper 17 (TH17) cells that mediate the pathogenesis of autoimmune diseases. However, it remains unknown whether RORγt plays a distinct role in the differentiation and effector function of TH17 cells. Here, we show that mutation of RORγt lysine-256, a ubiquitination site, to arginine (K256R) separates the RORγt role in these two functions. Preventing ubiquitination at K256 via arginine substitution does not affect RORγt-dependent thymocyte development, and TH17 differentiation in vitro and in vivo, however, greatly impaired the pathogenesis of TH17 cell-mediated experimental autoimmune encephalomyelitis (EAE). Mechanistically, K256R mutation impairs RORγt to bind to and activate Runx1 expression critical for TH17-mediated EAE. Thus, RORγt regulates the effector function of TH17 cells in addition to TH17 differentiation. This work informs the development of RORγt-based therapies that specifically target the effector function of TH17 cells responsible for autoimmunity.
RESUMEN
Steroid nuclear receptor coactivator 2 (SRC2) is a member of a family of transcription coactivators. While SRC1 inhibits the differentiation of regulatory T cells (Tregs) critical for establishing immune tolerance, we show here that SRC2 stimulates Treg differentiation. SRC2 is dispensable for the development of thymic Tregs, whereas naive CD4+ T cells from mice deficient of SRC2 specific in Tregs (SRC2fl/fl/Foxp3YFP-Cre) display defective Treg differentiation. Furthermore, the aged SRC2fl/fl/Foxp3YFP-Cre mice spontaneously develop autoimmune phenotypes including enlarged spleen and lung inflammation infiltrated with IFNγ-producing CD4+ T cells. SRC2fl/fl/Foxp3YFP-Cre mice also develop severer experimental autoimmune encephalomyelitis (EAE) due to reduced Tregs. Mechanically, SRC2 recruited by NFAT1 binds to the promoter and activates the expression of Nr4a2, which then stimulates Foxp3 expression to promote Treg differentiation. Members of SRC family coactivators thus play distinct roles in Treg differentiation and are potential drug targets for controlling immune tolerance.
RESUMEN
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a detrimental intraoral lesion that occurs in patients with long-term or high-dose use of anti-resorptive agents such as bisphosphonates. Tooth extraction is a known risk factor for BRONJ, and such intervention is often performed to eliminate existing pathological inflammatory conditions. Previously, we determined that ligature-induced periodontitis (LIP) is a risk factor for the development of osteonecrosis in mice, but it remains unclear whether the chronicity of LIP followed by extraction influences osteonecrosis development. In this study, we assess the effect of short-term and long-term LIP (ligature placed for 3 weeks [S-LIP] or 10 weeks [L-LIP], respectively) on osteonecrosis development in mice receiving 250 µg/kg/week zoledronic acid (ZOL). When compared to S-LIP, L-LIP caused 70% (p ≤ 0.0014) more bone loss without altering microbe composition. In the presence of ZOL, bone loss mediated by LIP was prevented and bone necrosis was induced. When the ligated tooth was extracted, histologic hallmarks of osteonecrosis including empty lacunae and necrotic bone were increased by 88% (p = 0.0374) and 114% (p = 0.0457), respectively, in L-LIP compared to S-LIP. We also observed significant increases in serum platelet factor 4 (PF4) and macrophage inflammatory factor 1 γ (MIP1γ) in mice that received ZOL treatment and had tooth extractions compared to controls, which may be systemic markers of inflammation-associated osteonecrosis development. Additionally, CD3+ T cells were identified as the major immune population in both health and disease, and we observed a 116% (p = 0.0402) increase in CD3+IL23R+ T cells in L-LIP compared to S-LIP lesions following extraction. Taken together, our study reveals that extracting a periodontally compromised tooth increases the formation of necrotic bone compared to extracting a periodontally healthy tooth and that osteonecrosis may be associated with the duration of the preexisting pathological inflammatory conditions. © 2022 American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Osteonecrosis , Periodontitis , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Conservadores de la Densidad Ósea/uso terapéutico , Difosfonatos/efectos adversos , Ratones , Osteonecrosis/inducido químicamente , Osteonecrosis/complicaciones , Periodontitis/complicaciones , Extracción Dental/efectos adversos , Ácido Zoledrónico/efectos adversosRESUMEN
Activation of the Ca2+ release-activated Ca2+ (CRAC) channel is crucial for T cell functions. It was recently shown that naked cuticle homolog 2 (NKD2), a signaling adaptor molecule, orchestrates trafficking of ORAI1, a pore subunit of the CRAC channels, to the plasma membrane for sustained activation of the CRAC channels. However, the physiological role of sustained Ca2+ entry via ORAI1 trafficking remains poorly understood. Using NKD2 as a molecular handle, we show that ORAI1 trafficking is crucial for sustained Ca2+ entry and cytokine production, especially in inflammatory Th1 and Th17 cells. We find that murine T cells cultured under pathogenic Th17-polarizing conditions have higher Ca2+ levels that are NKD2-dependent than those under nonpathogenic conditions. In vivo, deletion of Nkd2 alleviated clinical symptoms of experimental autoimmune encephalomyelitis in mice by selectively decreasing effector T cell responses in the CNS. Furthermore, we observed a strong correlation between NKD2 expression and proinflammatory cytokine production in effector T cells. Taken together, our findings suggest that the pathogenic effector T cell response demands sustained Ca2+ entry supported by ORAI1 trafficking.
Asunto(s)
Canales de Calcio , Canales de Calcio Activados por la Liberación de Calcio , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Citocinas/metabolismo , Ratones , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1RESUMEN
CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca2+-NFAT and JNK-AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies, however, to date no patient with damaging variants in CRACR2A has been identified. In this study, we describe a patient harboring biallelic variants in CRACR2A [paternal allele c.834 gaG> gaT (p.E278D) and maternal alelle c.430 Aga > Gga (p.R144G) c.898 Gag> Tag (p.E300*)], the gene encoding CRACR2A. The 33-year-old patient of East-Asian origin exhibited late onset combined immunodeficiency characterised by recurrent chest infections, panhypogammaglobulinemia and CD4+ T cell lymphopenia. In vitro exposure of patient B cells to a T-dependent stimulus resulted in normal generation of antibody-secreting cells, however the patient's T cells showed pronounced reduction in CRACR2A protein levels and reduced proximal TCR signaling, including dampened SOCE and reduced JNK phosphorylation, that contributed to a defect in proliferation and cytokine production. Expression of individual allelic mutants in CRACR2A-deleted T cells showed that the CRACR2AE278D mutant did not affect JNK phosphorylation, but impaired SOCE which resulted in reduced cytokine production. The truncated double mutant CRACR2AR144G/E300* showed a pronounced defect in JNK phosphorylation as well as SOCE and strong impairment in cytokine production. Thus, we have identified variants in CRACR2A that led to late-stage combined immunodeficiency characterized by loss of function in T cells.
Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Citocinas/biosíntesis , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/fisiopatología , Receptores de Antígenos de Linfocitos T/metabolismo , Adulto , Pueblo Asiatico , Canales de Calcio Activados por la Liberación de Calcio/inmunología , Citocinas/genética , Variación Genética , Humanos , Enfermedades de Inmunodeficiencia Primaria/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunologíaRESUMEN
Podocyte, the gatekeeper of the glomerular filtration barrier, is a primary target for growth factor and Ca2+ signaling whose perturbation leads to proteinuria. However, the effects of insulin action on store-operated Ca2+ entry (SOCE) in podocytes remain unknown. Here, we demonstrated that insulin stimulates SOCE by VAMP2-dependent Orai1 trafficking to the plasma membrane. Insulin-activated SOCE triggers actin remodeling and transepithelial albumin leakage via the Ca2+-calcineurin pathway in podocytes. Transgenic Orai1 overexpression in mice causes podocyte fusion and impaired glomerular filtration barrier. Conversely, podocyte-specific Orai1 deletion prevents insulin-stimulated SOCE, synaptopodin depletion, and proteinuria. Podocyte injury and albuminuria coincide with Orai1 upregulation at the hyperinsulinemic stage in diabetic (db/db) mice, which can be ameliorated by the suppression of Orai1-calcineurin signaling. Our results suggest that tightly balanced insulin action targeting podocyte Orai1 is critical for maintaining filter integrity, which provides novel perspectives on therapeutic strategies for proteinuric diseases, including diabetic nephropathy.
Asunto(s)
Calcio/metabolismo , Proteína ORAI1/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Animales , Biotinilación , Western Blotting , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteína ORAI1/genética , Proteinuria/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Sustained activation of the Ca2+-release-activated Ca2+ (CRAC) channel is pivotal for effector T cell responses. The mechanisms underlying this sustainability remain poorly understood. We find that plasma membrane localization of ORAI1, the pore subunit of CRAC channels, is limited in effector T cells, with a significant fraction trapped in intracellular vesicles. From a targeted screen, we identify an essential component of ORAI1+ vesicles, naked cuticle homolog 2 (NKD2). Mechanistically, NKD2, an adaptor molecule activated by signaling pathways downstream of T cell receptors, orchestrates trafficking and insertion of ORAI1+ vesicles to the plasma membrane. Together, our findings suggest that T cell receptor (TCR)-stimulation-dependent insertion of ORAI1 into the plasma membrane is essential for sustained Ca2+ signaling and cytokine production in T cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteína ORAI1/metabolismo , Linfocitos T/metabolismo , Señalización del Calcio/fisiología , Humanos , Proteínas de Neoplasias/metabolismoRESUMEN
ORAI1 and STIM1 are the critical mediators of store-operated Ca 2+ entry by acting as the pore subunit and an endoplasmic reticulum-resident signaling molecule, respectively. In addition to Ca 2+ signaling, STIM1 is also involved in regulation of a cytosolic nucleic acid sensing pathway. Using ORAI1 and STIM1 knockout cells, we examined their contribution to the host response to SARS-CoV-2 infection. STIM1 knockout cells showed strong resistance to SARS-CoV-2 infection due to enhanced type I interferon response. On the contrary, ORAI1 knockout cells showed high susceptibility to SARS-CoV-2 infection as judged by increased expression of viral proteins and a high viral load. Mechanistically, ORAI1 knockout cells showed reduced homeostatic cytoplasmic Ca 2+ concentration and severe impairment in tonic interferon signaling. Transcriptome analysis showed downregulation of multiple cellular defense mechanisms, including antiviral signaling pathways in ORAI1 knockout cells, which are likely due to reduced expression of the Ca 2+ -dependent transcription factors of the activator protein 1 (AP-1) family and MEF2C . Our results identify a novel role of ORAI1-mediated Ca 2+ signaling in regulating the baseline type I interferon level, which is a determinant of host resistance to SARS-CoV-2 infection.
RESUMEN
The current optogenetic tools to elevate cytoplasmic Ca2+ concentrations either do not have high ion selectivity or activate undesirable signaling pathways. He et al. (2021) generated a light-operated Ca2+ channel by integrating a photosensitive module directly into ORAI1 channels to selectively raise cytoplasmic Ca2+ levels.
Asunto(s)
Molécula de Interacción Estromal 1 , Citosol , Células HEK293 , Humanos , Proteína ORAI1RESUMEN
Ca2+ release-activated Ca2+ (CRAC) channels elevate cytoplasmic Ca2+ concentration, which is essential for T cell activation, differentiation and effector functions. T cell receptor stimulation induces depletion of the endoplasmic reticulum (ER) Ca2+ stores, which is sensed by stromal interaction molecule 1 (STIM1). STIM1 translocates to the ER-plasma membrane (PM) junctions to interact with ORAI1, the pore subunit of the CRAC channels. Here, we show that two members of the extended synaptotagmin (E-Syt) family, E-Syt1, and the short isoform of E-Syt2 (E-Syt2S), contribute to activation of CRAC channels in T cells. Knockdown or deletion of both ESYT1 and ESYT2 reduced store-operated Ca2+ entry (SOCE) and ORAI1-STIM1 clustering in Jurkat T cells. Further, depletion of E-Syts in primary T cells decreased Ca2+ entry and cytokine production. While the ER-PM junctions were reduced in both HeLa and Jurkat T cells deleted for ESYT1 and ESYT2, SOCE was impaired only in Jurkat T cells, suggesting that the membrane-tethering function of E-Syts is distinct from their role in SOCE. Mechanistically, E-Syt2S, the predominant isoform of E-Syt2 in T cells, recruited STIM1 to the junctions via a direct interaction. This study demonstrates a membrane-tethering-independent role of E-Syts in activation of CRAC channels in T cells.
Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagminas/metabolismo , Linfocitos T/metabolismo , Adulto , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Proteína ORAI1/metabolismo , Unión Proteica , Sinaptotagminas/genéticaRESUMEN
Histone Lys-specific demethylases (KDMs) play a key role in many biological processes through epigenetic mechanisms. However, the role of KDMs in inflammatory responses to oral bacterial infection is poorly understood. Here, we show a novel regulatory role of KDM3C in inflammatory responses to oral bacterial infection. KDM3C expression is transiently suppressed in human and mouse macrophages exposed to LPS from Porphyromonas gingivalis (Pg LPS). Loss of KDM3C in both human and mouse macrophages led to notable induction of proinflammatory cytokines in response to Pg LPS stimulation. Also, KDM3C depletion led to strong induction of p65 phosphorylation and accelerated nuclear translocation in cells exposed to Pg LPS. Kdm3C knockout (KO) in mice led to increased alveolar bone destruction upon induction of experimental periodontitis or pulp exposure compared with those of the wild-type (WT) littermates. The Kdm3C KO mice also revealed an increased number of osteoclasts juxtaposed to the bony lesions. We also confirmed enhanced osteoclastogenesis by bone marrow-derived macrophages isolated from the Kdm3C KO compared with the WT controls. These findings suggest an anti-inflammatory function of KDM3C in regulating the inflammatory responses against oral bacterial infection through suppression of NF-κB signaling and osteoclastogenesis.-Lee, J. Y., Mehrazarin, S., Alshaikh, A., Kim, S., Chen, W., Lux, R., Gwack, Y., Kim, R. H., Kang, M. K. Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-κB signaling and osteoclastogenesis.
Asunto(s)
Inflamación/prevención & control , Histona Demetilasas con Dominio de Jumonji/fisiología , Enfermedades de la Boca/prevención & control , FN-kappa B/antagonistas & inhibidores , Osteogénesis , Porphyromonas gingivalis/patogenicidad , Animales , Infecciones por Bacteroidaceae/complicaciones , Infecciones por Bacteroidaceae/microbiología , Diferenciación Celular , Citocinas , Histonas , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Enfermedades de la Boca/etiología , Enfermedades de la Boca/metabolismo , Enfermedades de la Boca/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoclastos/microbiología , Osteoclastos/patología , Fosforilación , Transducción de SeñalAsunto(s)
Síndromes de Inmunodeficiencia/diagnóstico , Linfocitos/fisiología , Proteínas de Neoplasias/genética , Eliminación de Secuencia/genética , Molécula de Interacción Estromal 1/genética , Células Cultivadas , Preescolar , Trasplante de Células Madre de Sangre del Cordón Umbilical , Eccema , Humanos , Ictiosis , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Lactante , Infecciones , Masculino , Linaje , FenotipoRESUMEN
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.
Asunto(s)
Interferón Tipo I/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Preescolar , Chlorocebus aethiops , ADN Viral/inmunología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/inmunología , Humanos , Inmunidad Innata , Células Jurkat , Macrófagos , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Cultivo Primario de Células , Inmunodeficiencia Combinada Grave/sangre , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/inmunología , Células VeroRESUMEN
SRC3, a highly conserved member of the steroid receptor coactivator (SRC) family, is recruited by transcription factors to regulate cellular function. Previously, we demonstrated that SRC1, another highly conserved member of the SRC family, interacts with RORγt to regulate Th17 differentiation. However, the relationship between SRC1 and SRC3 in the regulation of Th17 cell function remains unknown. In this study, we demonstrate that mouse SRC3 interacts with RORγt in Th17 cells but not in thymocytes. In addition, Src3-/- mice exhibited defective Th17 differentiation and induction of experimental autoimmune encephalomyelitis but normal thymocyte development. Furthermore, a K313 to arginine mutation of RORγt (RORγt-K313R), which disrupts the interaction of RORγt with SRC3 but not with SRC1, impairs Th17 differentiation but not thymocyte development. These data suggest that SRC3 works with SRC1 to regulate RORγt-dependent Th17 differentiation but is not essential for RORγt-dependent thymocyte development.
Asunto(s)
Diferenciación Celular , Coactivador 3 de Receptor Nuclear/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células Th17/inmunología , Timocitos/citología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica , Activación de Linfocitos , Ratones , Ratones Noqueados , Células Th17/citología , Timocitos/inmunologíaRESUMEN
Ca2+ release-activated Ca2+ channel regulator 2A (CRACR2A) is expressed abundantly in T cells and acts as a signal transmitter between TCR stimulation and activation of the Ca2+/NFAT and JNK/AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies and was shown to be one of the most sensitive targets of the widely used statin drugs. However, the physiological role of CRACR2A in T cell functions remains unknown. In this study, using transgenic mice for tissue-specific deletion, we show that CRACR2A promotes Th1 responses and effector function of Th17 cells. CRACR2A was abundantly expressed in Th1 and Th17 cells. In vitro, deficiency of CRACR2A decreased Th1 differentiation under nonpolarizing conditions, whereas the presence of polarizing cytokines compensated this defect. Transcript analysis showed that weakened TCR signaling by deficiency of CRACR2A failed to promote Th1 transcriptional program. In vivo, conditional deletion of CRACR2A in T cells alleviated Th1 responses to acute lymphocytic choriomeningitis virus infection and imparted resistance to experimental autoimmune encephalomyelitis. Analysis of CNS from experimental autoimmune encephalomyelitis-induced mice showed impaired effector functions of both Th1 and Th17 cell types, which correlated with decreased pathogenicity. Collectively, our findings demonstrate the requirement of CRACR2A-mediated TCR signaling in Th1 responses as well as pathogenic conversion of Th17 cells, which occurs at the site of inflammation.