Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Front Aging Neurosci ; 15: 1236335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744395

RESUMEN

Background: The locus coeruleus (LC) produces catecholamines (norepinephrine and dopamine) and is implicated in a broad range of cognitive functions including attention and executive function. Recent advancements in magnetic resonance imaging (MRI) approaches allow for the visualization and quantification of LC structure. Human research focused on the LC has since exploded given the LC's role in cognition and relevance to current models of psychopathology and neurodegenerative disease. However, it is unclear to what extent LC structure reflects underlying catecholamine function, and how LC structure and neurochemical function are collectively associated with cognitive performance. Methods: A partial least squares correlation (PLSC) analysis was applied to 19 participants' LC structural MRI measures and catecholamine synthesis capacity measures assessed using [18F]Fluoro-m-tyrosine ([18F]FMT) positron emission tomography (PET). Results: We found no direct association between LC-MRI and LC-[18F]FMT measures for rostral, middle, or caudal portions of the LC. We found significant associations between LC neuroimaging measures and neuropsychological performance that were driven by rostral and middle portions of the LC, which is in line with LC cortical projection patterns. Specifically, associations with executive function and processing speed arose from contributions of both LC structure and interactions between LC structure and catecholamine synthesis capacity. Conclusion: These findings leave open the possibility that LC MRI and PET measures contribute unique information and suggest that their conjoint use may increase sensitivity to brain-behavior associations in small samples.

3.
Neurobiol Aging ; 129: 137-148, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329853

RESUMEN

The noradrenergic locus coeruleus (LC) is one of the protein pathology epicenters in neurodegenerative diseases. In contrast to PET (positron emission tomography), MRI (magnetic resonance imaging) offers the spatial resolution necessary to investigate the 3-4 mm wide and 1.5 cm long LC. However, standard data postprocessing is often too spatially imprecise to allow investigating the structure and function of the LC at the group level. Our analysis pipeline uses a combination of existing toolboxes (SPM12, ANTs, FSL, FreeSurfer), and is tailored towards achieving suitable spatial precision in the brainstem area. Its effectiveness is demonstrated using 2 datasets comprising both younger and older adults. We also suggest quality assessment procedures which allow to quantify the spatial precision obtained. Spatial deviations below 2.5 mm in the LC area are achieved, which is superior to current standard approaches. Relevant for ageing and clinical researchers interested in brainstem imaging, we provide a tool for more reliable analyses of structural and functional LC imaging data which can be also adapted for investigating other nuclei of the brainstem.


Asunto(s)
Locus Coeruleus , Enfermedades Neurodegenerativas , Humanos , Anciano , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Imagen por Resonancia Magnética/métodos , Envejecimiento , Enfermedades Neurodegenerativas/patología , Tomografía de Emisión de Positrones , Norepinefrina
4.
Brain Commun ; 5(3): fcad085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151227

RESUMEN

The noradrenergic system shows pathological modifications in aging and neurodegenerative diseases and undergoes substantial neuronal loss in Alzheimer's disease and Parkinson's disease. While a coherent picture of structural decline in post-mortem and in vivo MRI measures seems to emerge, whether this translates into a consistent decline in available noradrenaline levels is unclear. We conducted a meta-analysis of noradrenergic differences in Alzheimer's disease dementia and Parkinson's disease using CSF and PET biomarkers. CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol levels as well as noradrenaline transporters availability, measured with PET, were summarized from 26 articles using a random-effects model meta-analysis. Compared to controls, individuals with Parkinson's disease showed significantly decreased levels of CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol, as well as noradrenaline transporters availability in the hypothalamus. In Alzheimer's disease dementia, 3-methoxy-4-hydroxyphenylglycol but not noradrenaline levels were increased compared to controls. Both CSF and PET biomarkers of noradrenergic dysfunction reveal significant alterations in Parkinson's disease and Alzheimer's disease dementia. However, further studies are required to understand how these biomarkers are associated to the clinical symptoms and pathology.

5.
Alzheimers Dement ; 19(5): 2182-2196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36642985

RESUMEN

The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Biomarcadores , Progresión de la Enfermedad
6.
Mol Psychiatry ; 27(12): 4984-4993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36117208

RESUMEN

The locus coeruleus (LC) in the brainstem as the main regulator of brain noradrenaline gains increasing attention because of its involvement in neurologic and psychiatric diseases and its relevance in general to brain function. In this study, we created a structural connectome of the LC nerve fibers based on in vivo MRI tractography to gain an understanding into LC connectivity and its impact on LC-related psychological measures. We combined our structural results with ultra-high field resting-state functional MRI to learn about the relationship between in vivo LC structural and functional connections. Importantly, we reveal that LC brain fibers are strongly associated with psychological measures of anxiety and alertness indicating that LC-noradrenergic connectivity may have an important role on brain function. Lastly, since we analyzed all our data in subject-specific space, we point out the potential of structural LC connectivity to reveal individual characteristics of LC-noradrenergic function on the single-subject level.


Asunto(s)
Conectoma , Locus Coeruleus , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Conectoma/métodos , Atención
7.
Auton Neurosci ; 236: 102900, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781120

RESUMEN

Transcutaneous auricular vagus nerve stimulation (taVNS), as a non-invasive brain stimulation technique may influence the locus coeruleus-norepinephrine system (LC-NE system) via modulation of the Vagus Nerve (VN) which projects to the LC. Few human studies exist examining the effects of taVNS on the LC-NE system and studies to date assessing the ability of taVNS to target the LC yield heterogeneous results. The aim of this review is to present an overview of the current challenges in assessing effects of taVNS on LC function and how translational approaches spanning animal and human research can help in this regard. A particular emphasis of the review discusses how the effects of taVNS may be influenced by changes in structure and function of the LC-NE system across the human lifespan and in disease.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Animales , Humanos , Locus Coeruleus , Norepinefrina , Nervio Vago
8.
Neuroimage Rep ; 1(1): 100002, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34396361

RESUMEN

Sensitive and reliable in vivo imaging of the locus coeruleus (LC) is important to develop and evaluate its potential as a biomarker in neurodegenerative diseases such as Alzheimer's disease (AD). It is not known whether AD-related alterations in LC integrity can be detected using 18F-labelled fluoro-2-deoxyglucose (FDG) positron emission tomography (PET). Mean FDG-PET images from AD patients (N â€‹= â€‹193) and controls (N â€‹= â€‹256) from the ADNI database were co-registered to a study-wise anatomical template. Regional LC median standardized uptake value ratio (SUVR) values were obtained using four previously published LC masks and normalized to values from pons and cerebellar vermis reference regions. To support the validity of our methods, other regions previously reported to be most and least affected metabolically in AD were also compared to controls. The LC did not show between-group differences in FDG-PET signal, whereas the mammillary bodies did, despite these regions having comparable volumes and SUVR ranges. Brain regions previously reported to be most and least affected metabolically in AD compared to controls showed medium-to-large and small effect sizes for SUVR differences respectively. The results do not support the current application of LC FDG-PET signal as an in vivo biomarker for AD. Methodological and demographic factors potentially contributing to these findings are discussed. Future research may investigate age-related differences in LC FDG-PET signal and higher resolution images to fully explore its biomarker potential.

9.
Neuropsychologia ; 143: 107476, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32360297

RESUMEN

The error-related negativity (ERN/Ne) as well as the early and late error positivity (Pe) are electrophysiological correlates known to reflect error detection and error awareness. Despite much evidence on age differences in mastering response conflicts, the development and the functional distinctiveness of these components across the lifespan is still unclear. Here we investigated maturation- and aging-related differences in the ERN/Ne, the early and late Pe during a response conflict task in a lifespan sample that included 45 children, 42 adolescents, 39 younger and 34 older adults. Lifespan age differences were characterized by marked declines of all three components in older age, whereas clear maturation effects from childhood to adolescence were only observed for error detection reflected in the ERN/Ne component. Furthermore, using regression analyses, we examined functional relationships of the error monitoring components to behavioral indicators of task performance. Across all age groups, both the ERN/Ne and the early Pe were related to response accuracy, but only the early Pe was further associated with performance in a covariate task indicative of perceptual processing and attention capacities. Our results suggest that the ERN/Ne, the early and late Pe reflect distinct but complementary processes of error monitoring across the lifespan.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Adolescente , Anciano , Envejecimiento , Niño , Humanos , Desempeño Psicomotor , Tiempo de Reacción , Análisis y Desempeño de Tareas
11.
Nat Commun ; 11(1): 1712, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249849

RESUMEN

The locus coeruleus (LC), the origin of noradrenergic modulation of cognitive and behavioral function, may play an important role healthy ageing and in neurodegenerative conditions. We investigated the functional significance of age-related differences in mean normalized LC signal intensity values (LC-CR) in magnetization-transfer (MT) images from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) cohort - an open-access, population-based dataset. Using structural equation modelling, we tested the pre-registered hypothesis that putatively noradrenergic (NA)-dependent functions would be more strongly associated with LC-CR in older versus younger adults. A unidimensional model (within which LC-CR related to a single factor representing all cognitive and behavioral measures) was a better fit with the data than the a priori two-factor model (within which LC-CR related to separate NA-dependent and NA-independent factors). Our findings support the concept that age-related reduction of LC structural integrity is associated with impaired cognitive and behavioral function.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Envejecimiento/fisiología , Envejecimiento Cognitivo/fisiología , Análisis de Clases Latentes , Locus Coeruleus/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Conducta/fisiología , Ciencias Bioconductuales , Cognición/fisiología , Estudios de Cohortes , Femenino , Humanos , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Adulto Joven
12.
Front Hum Neurosci ; 14: 568051, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33854421

RESUMEN

Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.

13.
Brain ; 142(9): 2558-2571, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327002

RESUMEN

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.


Asunto(s)
Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Norepinefrina/metabolismo , Biomarcadores/metabolismo , Humanos
14.
PLoS One ; 14(5): e0215849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067250

RESUMEN

Aging and dopamine modulation have both been independently shown to influence the functional connectivity of brain networks during rest. Dopamine modulation is known to decline during the course of aging. Previous evidence also shows that the dopamine transporter gene (DAT1) influences the re-uptake of dopamine and the anyA9 genotype of this gene is associated with higher striatal dopamine signaling. Expanding these two lines of prior research, we investigated potential interactive effects between aging and individual variations in the DAT1 gene on the modular organization of brain acvitiy during rest. The graph-theoretic metrics of modularity, betweenness centrality and participation coefficient were assessed in 41 younger (age 20-30 years) and 37 older (age 60-75 years) adults. Age differences were only observed in the participation coefficient in carriers of the anyA9 genotype of the DAT1 gene and this effect was most prominently observed in the default mode network. Furthermore, we found that individual differences in the values of the participation coefficient correlated with individual differences in fluid intelligence and a measure of executive control in the anyA9 carriers. The correlation between participation coefficient and fluid intelligence was mainly shared with age-related differences, whereas the correlation with executive control was independent of age. These findings suggest that DAT1 genotype moderates age differences in the functional integration of brain networks as well as the relation between network characteristics and cognitive abilities.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Genotipo , Red Nerviosa/fisiología , Descanso/fisiología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiología , Mapeo Encefálico , Cognición , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Adulto Joven
15.
Neurobiol Aging ; 74: 101-111, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30447418

RESUMEN

The locus coeruleus (LC), the major origin of noradrenergic modulation of the central nervous system, may play an important role in neuropsychiatric disorders including Parkinson's disease and Alzheimer's disease. The pattern of age-related change of the LC across the life span is unclear. We obtained normalized, mean LC signal intensity values, that is, contrast ratios (CRs), from magnetization transfer-weighted images to investigate the relationship between LC CR and age in cognitively normal healthy adults (N = 605, age range 18-88 years). Study participants were part of the Cambridge Centre for Ageing and Neuroscience-an open-access, population-based data set. We found a quadratic relationship between LC CR and age, the peak occurring around 60 years, with no differences between males and females. Subregional analyses revealed that age-related decline in LC CR was confined to the rostral portion of the LC. Older adults showed greater variance in overall LC CR than younger adults, and the functional and clinical implications of these observed age-related differences require further investigation. Visualization of the LC in this study may inform how future scanning parameters can be optimized, and provides insight into how LC integrity changes across the life span.


Asunto(s)
Envejecimiento Saludable/patología , Envejecimiento Saludable/psicología , Locus Coeruleus/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cognición , Femenino , Humanos , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Melaninas , Persona de Mediana Edad , Adulto Joven
16.
Neurobiol Aging ; 74: 90-100, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30439597

RESUMEN

Older adults struggle in dealing with changeable and uncertain environments across several cognitive domains. This has been attributed to difficulties in forming adequate task representations that help navigate uncertain environments. Here, we investigate how, in older adults, inadequate task representations impact on model-based reversal learning. We combined computational modeling and pupillometry during a novel model-based reversal learning task, which allowed us to isolate the relevance of task representations at feedback evaluation. We find that older adults overestimate the changeability of task states and consequently are less able to converge on unequivocal task representations through learning. Pupillometric measures and behavioral data show that these unreliable task representations in older adults manifest as a reduced ability to focus on feedback that is relevant for updating task representations, and as a reduced metacognitive awareness in the accuracy of their actions. Instead, the data suggested older adults' choice behavior was more consistent with a guidance by uninformative feedback properties such as outcome valence. Our study highlights that an inability to form adequate task representations may be a crucial factor underlying older adults' impaired model-based inference.


Asunto(s)
Envejecimiento/psicología , Cognición , Aprendizaje Inverso , Análisis y Desempeño de Tareas , Adulto , Anciano , Toma de Decisiones , Ambiente , Femenino , Retroalimentación Formativa , Humanos , Persona de Mediana Edad , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 115(9): 2228-2233, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440429

RESUMEN

The locus coeruleus (LC) is the principal origin of noradrenaline in the brain. LC integrity varies considerably across healthy older individuals, and is suggested to contribute to altered cognitive functions in aging. Here we test this hypothesis using an incidental memory task that is known to be susceptible to noradrenergic modulation. We used MRI neuromelanin (NM) imaging to assess LC structural integrity and pupillometry as a putative index of LC activation in both younger and older adults. We show that older adults with reduced structural LC integrity show poorer subsequent memory. This effect is more pronounced for emotionally negative events, in accord with a greater role for noradrenergic modulation in encoding salient or aversive events. In addition, we found that salient stimuli led to greater pupil diameters, consistent with increased LC activation during the encoding of such events. Our study presents novel evidence that a decrement in noradrenergic modulation impacts on specific components of cognition in healthy older adults. The findings provide a strong motivation for further investigation of the effects of altered LC integrity in pathological aging.


Asunto(s)
Envejecimiento/fisiología , Locus Coeruleus/fisiología , Memoria , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Imagen por Resonancia Magnética , Adulto Joven
19.
Neurosci Biobehav Rev ; 83: 325-355, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29107830

RESUMEN

The locus coeruleus (LC), the major origin of noradrenergic modulation of the central nervous system, innervates extensive areas throughout the brain and is implicated in a variety of autonomic and cognitive functions. Alterations in the LC-noradrenergic system have been associated with healthy ageing and neuropsychiatric disorders including Parkinson's disease, Alzheimer's disease and depression. The last decade has seen advances in imaging the structure and function of the LC, and this paper systematically reviews the methodology and outcomes of sixty-nine structural and functional MRI studies of the LC in humans. Structural MRI studies consistently showed lower LC signal intensity and volume in clinical groups compared to healthy controls. Within functional studies, the LC was activated by a variety of tasks/stimuli and had functional connectivity to a range of brain regions. However, reported functional LC location coordinates were widely distributed compared to previously published neuroanatomical locations. Methodological and demographic factors potentially contributing to these differences are discussed, together with recommendations to optimize the reliability and validity of future LC imaging studies.


Asunto(s)
Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador , Locus Coeruleus/fisiología
20.
Neurobiol Aging ; 58: 129-139, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28734217

RESUMEN

A better memory for negative emotional events is often attributed to a conjoint impact of increased arousal and noradrenergic modulation (NA). A decline in NA during aging is well documented but its impact on memory function during aging is unclear. Using pupil diameter (PD) as a proxy for NA, we examined age differences in memory for negative events in younger (18-30 years) and older (62-83 years) adults based on a segregation of early arousal to negative events, and later retrieval-related PD responses. In keeping with the hypothesis of reduced age-related NA influences, older adults showed attenuated induced PD responses to negative emotional events. The findings highlight a likely contribution of NA to negative emotional memory, mediated via arousal that may be compromised with aging.


Asunto(s)
Nivel de Alerta/fisiología , Emociones/fisiología , Memoria Episódica , Memoria/fisiología , Pupila/fisiología , Reconocimiento en Psicología/fisiología , Reflejo Pupilar/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Norepinefrina/fisiología , Tiempo de Reacción , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA