Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(44): 12715-12722, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020370

RESUMEN

In fused donor-acceptor (D-A) ensembles, rapid charge recombination often occurs because the D and A units are spatially close and strongly coupled. To the best of our knowledge, a long-lived charge separated (CS) state is still elusive in such systems. The results presented here show that symmetric annulation of two tetrathiafulvalene (TTF) donors to a central tetraazapyrene (TAP) acceptor via two quinoxaline units leads to a CS state lifetime of a few ns. A detailed study of the electronic interactions between TTF and TAP units in the ground and excited states was performed and compared with the asymmetric counterpart by cyclic voltammetry, optical absorption and ultrafast transient absorption spectroscopy. The results demonstrate that the photoinduced asymmetric charge trapping between two TTFs significantly stabilizes the CS state, which is also verified theoretically.

2.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764470

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have emerged as promising materials for organic electronics, including organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Particularly, non-hexagonal ring-fused PAHs are highly desirable due to their unique optoelectronic properties. Herein, a new redox-active azulene-perylene diimide triad 1 and its ring-fused counterpart, diazulenocoronene diimide 2, were synthesized and fully characterized by a combination of NMR, cyclic voltammetry, and UV-visible absorption spectroscopy. Direct comparison of their electronic properties leads us to the conclusion that a significant change in the localization of HOMO and LUMO occurs upon the fusion of azulene and perylene diimide in 2, leading to the lack of intramolecular charge-transfer character for transitions in the visible spectral region. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed to gain further insight into various electronic transitions. Moreover, we found that the adaptive response to acids and bases manifests itself in a reversible two-color change that can be attributed to changes in the chemical structures. Our findings pave the way for manipulating the relative HOMO and LUMO energy levels of organic chromophores by fusing non-alternant azulenes to an otherwise flat PAH, which could possibly lead to applications in organic electronics and optical sensors.

3.
Org Biomol Chem ; 21(39): 7908-7912, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750811

RESUMEN

The supramolecular self-assembly of pyrene-DNA conjugates into nanostructures is presented. DNA functionalized with different types of pyrene isomers at the 3'-end self-assemble into nano-objects. The shape of the nanostructures is influenced by the type of pyrene isomer appended to the DNA. Multilamellar vesicles are observed with the 1,6- and 1,8-isomers, whereas conjugates of the 2,7-isomer exclusively assemble into spherical nanoparticles. Self-assembled nano-spheres obtained with the 2,7-dialkynyl pyrene isomer were used for the construction of an artificial light-harvesting complex (LHC) in combination with Cy3 as the energy acceptor.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanoestructuras/química , ADN/química , Pirenos/química
4.
Nat Commun ; 14(1): 5956, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749099

RESUMEN

Electron-vibration coupling is of critical importance for the development of molecular electronics, spintronics, and quantum technologies, as it affects transport properties and spin dynamics. The control over charge-state transitions and subsequent molecular vibrations using scanning tunneling microscopy typically requires the use of a decoupling layer. Here we show the vibronic excitations of tetrabromotetraazapyrene (TBTAP) molecules directly adsorbed on Ag(111) into an orientational glassy phase. The electron-deficient TBTAP is singly-occupied by an electron donated from the substrate, resulting in a spin 1/2 state, which is confirmed by a Kondo resonance. The TBTAP•- discharge is controlled by tip-gating and leads to a series of peaks in scanning tunneling spectroscopy. These occurrences are explained by combining a double-barrier tunneling junction with a Franck-Condon model including molecular vibrational modes. This work demonstrates that suitable precursor design enables gate-dependent vibrational excitations of molecules on a metal, thereby providing a method to investigate electron-vibration coupling in molecular assemblies without a decoupling layer.

5.
Chem Sci ; 14(22): 6079-6086, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293661

RESUMEN

The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.

6.
ACS Mater Lett ; 5(4): 1083-1090, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37034384

RESUMEN

Obtaining a robust superconducting state in atomically precise nanographene (NG) structures by proximity to a superconductor could foster the discovery of topological superconductivity in graphene. On-surface synthesis of such NGs has been achieved on noble metals and metal oxides; however, it is still absent on superconductors. Here, we present a synthetic method to induce superconductivity of polymeric chains and NGs adsorbed on the superconducting Nb(110) substrate covered by thin Ag films. Using atomic force microscopy at low temperature, we characterize the chemical structure of each subproduct formed on the superconducting Ag layer. Scanning tunneling spectroscopy further allows us to elucidate the electronic properties of these nanostructures, which consistently show a superconducting gap.

7.
Bioconjug Chem ; 34(1): 70-77, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35357155

RESUMEN

The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.


Asunto(s)
ADN , Oligonucleótidos , Microscopía por Crioelectrón , ADN/química , Polietilenglicoles , Nanotecnología
8.
Chem Sci ; 13(44): 13020-13031, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36425503

RESUMEN

Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.

9.
Phys Rev Lett ; 128(21): 216102, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687435

RESUMEN

A combination of low temperature atomic force microcopy and molecular dynamic simulations is used to demonstrate that soft designer molecules realize a sidewinding motion when dragged over a gold surface. Exploiting their longitudinal flexibility, pyrenylene chains are indeed able to lower diffusion energy barriers via on-surface directional locking and molecular strain. The resulting ultralow friction reaches values on the order of tens of pN reported so far only for rigid chains sliding on an incommensurate surface. Therefore, we demonstrate how molecular flexibility can be harnessed to realize complex nanomotion while retaining a superlubric character. This is in contrast with the paradigm guiding the design of most superlubric nanocontacts (mismatched rigid contacting surfaces).

10.
Org Biomol Chem ; 20(18): 3703-3707, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35262542

RESUMEN

The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology.


Asunto(s)
ADN , Estilbenos , Secuencia de Bases , Nanotecnología , Estilbenos/química
11.
Mol Microbiol ; 117(2): 450-461, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875117

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins are found in all eukaryotes and are especially abundant on the surface of protozoan parasites such as Trypanosoma brucei. GPI-mannosyltransferase-I (GPI-MT-I) catalyzes the addition of the first of three mannoses that make up the glycan core of GPI. Mammalian and yeast GPI-MT-I consist of two essential subunits, the catalytic subunit PIG-M/Gpi14 and the accessory subunit PIG-X/Pbn1(mammals/yeast). T. brucei GPI-MT-I has been highlighted as a potential antitrypanosome drug target but has not been fully characterized. Here, we show that T. brucei GPI-MT-I also has two subunits, TbGPI14 and TbPBN1. Using TbGPI14 deletion, and TbPBN1 RNAi-mediated depletion, we show that both proteins are essential for the mannosyltransferase activity needed for GPI synthesis and surface expression of GPI-anchored proteins. In addition, using native PAGE and co-immunoprecipitation analyses, we demonstrate that TbGPI14 and TbPBN1 interact to form a higher-order complex. Finally, we show that yeast Gpi14 does not restore GPI-MT-I function in TbGPI14 knockout trypanosomes, consistent with previously demonstrated species specificity within GPI-MT-I subunit associations. The identification of an essential trypanosome GPI-MT-I subcomponent indicates wide conservation of the heterodimeric architecture unusual for a glycosyltransferase, leaving open the question of the role of the noncatalytic TbPBN1 subunit in GPI-MT-I function.


Asunto(s)
Trypanosoma brucei brucei , Animales , Glicosilfosfatidilinositoles , Mamíferos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
12.
Chem Commun (Camb) ; 57(96): 12972-12975, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34792067

RESUMEN

The electronic effect of tert-butyl groups on intramolecular through-bond interactions between redox units in tetrathiafulvalene-tetraazapyrene (TAP) triads is investigated. The insertion of tert-butyl groups raises the TAP-localised LUMO level by 0.21 eV, in fairly good agreement with 0.17 eV determined by DFT calculations.

13.
Angew Chem Int Ed Engl ; 60(49): 25872-25877, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529324

RESUMEN

An amphiphilic phosphodiester-linked azobenzene trimer has been exploited in the development of stimuli-responsive, water-soluble supramolecular polymers. The trimer can reversibly undergo thermal and photoisomerization between Z- and E-isomers. Its self-assembly properties in aqueous medium have been investigated by spectroscopic and microscopic techniques, demonstrating that E- and Z-azobenzene trimers form supramolecular nanosheets and toroidal nanostructures, respectively. By virtue of the E/Z photoisomerization of the azobenzene units, the two different supramolecular morphologies can be switched by photoirradiation. The findings pave a way towards stimuli-responsive, water-soluble supramolecular polymers which hold great promise in the development of smart functional materials.

14.
J Biol Chem ; 297(2): 100977, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34284059

RESUMEN

Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Polisacáridos/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis/metabolismo , Animales , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/química , Proteínas Protozoarias , Trypanosoma brucei brucei/aislamiento & purificación , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis/parasitología , Tripanosomiasis/patología
15.
Chem Commun (Camb) ; 57(54): 6648-6651, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34128018

RESUMEN

The chemical synthesis and the supramolecular assembly of an aromatic oligoamine are described. The self-assembly of the cationic oligomers in aqueous solution leads to the formation of vesicular objects. The assembly process of the oligomers is monitored by absorption and fluorescence spectroscopy and the formed vesicles are characterized by atomic force and transmission electron microscopy. The electrostatic complementarity of anionic supramolecular polymers sheets and the cationic vesicles is used for a layered assembly process.

16.
Chemistry ; 27(17): 5399-5403, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33524171

RESUMEN

Ultrafast optical control of intramolecular charge flow was demonstrated, which paves the way for photocurrent modulation and switching with a highly wavelength-selective ON/OFF ratio. The system that was explored is a fac-[Re(CO)3 (TTF-DPPZ)Cl] complex, where TTF-DPPZ=4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine. DFT calculations and AC-Stark spectroscopy confirmed the presence of two distinct optically active charge-transfer processes, namely a metal-to-ligand charge transfer (MLCT) and an intra-ligand charge transfer (ILCT). Ultrafast transient absorption measurements showed that the ILCT state decays in the ps regime. Upon excitation to the MLCT state, only a long-lived 3 MLCT state was observed after 80 ps. Remarkably, however, the bleaching of the ILCT absorption band remained as a result of the effective inhibition of the HOMO-LUMO transition.

17.
Angew Chem Int Ed Engl ; 60(15): 8370-8375, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33507589

RESUMEN

Nitrogen-doped Kagome graphene (N-KG) has been theoretically predicted as a candidate for the emergence of a topological band gap as well as unconventional superconductivity. However, its physical realization still remains very elusive. Here, we report on a substrate-assisted reaction on Ag(111) for the synthesis of two-dimensional graphene sheets possessing a long-range honeycomb Kagome lattice. Low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) with a CO-terminated tip supported by density functional theory (DFT) are employed to scrutinize the structural and electronic properties of the N-KG down to the atomic scale. We demonstrate its semiconducting character due to the nitrogen doping as well as the emergence of Kagome flat bands near the Fermi level which would open new routes towards the design of graphene-based topological materials.

18.
Sci Rep ; 11(1): 1411, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446867

RESUMEN

The oligosaccharide required for asparagine (N)-linked glycosylation of proteins in the endoplasmic reticulum (ER) is donated by the glycolipid Glc3Man9GlcNAc2-PP-dolichol. Remarkably, whereas glycosylation occurs in the ER lumen, the initial steps of Glc3Man9GlcNAc2-PP-dolichol synthesis generate the lipid intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) on the cytoplasmic side of the ER. Glycolipid assembly is completed only after M5-DLO is translocated to the luminal side. The membrane protein (M5-DLO scramblase) that mediates M5-DLO translocation across the ER membrane has not been identified, despite its importance for N-glycosylation. Building on our ability to recapitulate scramblase activity in proteoliposomes reconstituted with a crude mixture of ER membrane proteins, we developed a mass spectrometry-based 'activity correlation profiling' approach to identify scramblase candidates in the yeast Saccharomyces cerevisiae. Data curation prioritized six polytopic ER membrane proteins as scramblase candidates, but reconstitution-based assays and gene disruption in the protist Trypanosoma brucei revealed, unexpectedly, that none of these proteins is necessary for M5-DLO scramblase activity. Our results instead strongly suggest that M5-DLO scramblase activity is due to a protein, or protein complex, whose activity is regulated at the level of quaternary structure.


Asunto(s)
Retículo Endoplásmico/enzimología , Hexosiltransferasas/química , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas Protozoarias/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Trypanosoma brucei brucei/enzimología , Dolicoles/química , Dolicoles/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Chem Commun (Camb) ; 56(87): 13421-13424, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33035283

RESUMEN

A new approach for a compact annulation of tetrathiafulvalene (TTF) and dipyrrolylquinoxaline difluoroborate (QB) is presented, leading to strong electronic interactions between the TTF and QB units. Regulation of distinct photoinduced charge flows within this dyad is achieved by external stimuli, which is also verified by TD-DFT calculations.

20.
Org Biomol Chem ; 18(35): 6818-6822, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936197

RESUMEN

DNA-organized multi-chromophoric systems containing phenanthrene and pyrene derivatives exhibit a highly efficient excitation energy transfer from phenanthrene (donor) to pyrene (acceptor). The energy transfer also occurs if the phenanthrene antenna is interrupted by intervening DNA base pairs. Artificial light-harvesting complexes composed of up to five phenanthrene-DNA alternations with fluorescence quantum yields as high as 68% are described.


Asunto(s)
Transferencia de Energía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...