Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23201, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163124

RESUMEN

Chitosan nanocoatings (thickness range of 120-540 nm) were produced on glass, zinc and silicon substrates with dip-coating and spin coating techniques to study their pH-dependent wetting and swelling behaviour. The coatings were N-acetylated with the methanolic solution of acetic anhydride to increase the degree of acetylation from 36 % to 100 % (according to ATR-FTIR studies). The measured contact angles of Britton-Robinson (BR) buffer solutions (pH 6.0, 7.4 and 9.0) were lower on the acetylated surfaces (ca. 50°), than that of their native counterparts (ca. 70°) and does not depend on the pH. Contrary, contact angles on the native coating deteriorated 10°-15° with increasing the pH. In addition, for native coatings, the decrease of the contact angles over time also showed a pH dependence: at pH 9.0 the contact angle decreased by 7° in 10 min, while at pH 6.0 it decreased by 13° and at a much faster rate. The constraint swelling of the coatings in BR puffer solutions was studied in situ by scanning angle reflectometry. The swelling degree of the native coatings increased significantly with decreasing pH (from 250 % to 500 %) due to the increased number of protonated amino groups, while the swelling degree of acetylated coatings was ca. 160 % regardless of the pH. The barrier properties of the coatings were studied by electrochemical tests on zinc substrates. The analysis of polarization curves showed the more permeable character of the acetylated coatings despite the non-polar character of the bulk coating matrix. It can be concluded that in the case of native coatings, 49 % of the absorbed water is in bound form, which does not assist ion transport, while in the case of acetylated coatings, this value is only 33 %.

2.
J Phys Chem B ; 127(23): 5341-5352, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276239

RESUMEN

The surface affinity of tetramethylammonium iodide (TMAI) in aqueous solutions is investigated by surface tension measurements and molecular dynamics computer simulations. Experiments, performed in the entire composition range of solubility using the pendant drop method with two different setups, clearly reveal that TMAI is a weakly capillary active salt. Computer simulations performed with the AMBER force field reproduce the experimental data very well, while two other major force fields (i.e., CHARMM and OPLS) can still reproduce the experimental trend qualitatively; however, even qualitative reproduction of the experimental trend requires scaling down the ion charges according to the Leontyev-Stuchebrukhov correction. On the other hand, the GROMOS force field fails in reproducing the experimentally confirmed capillary activity of TMAI. Molecular dynamics simulation results show that, among the two ions, iodide has a clearly larger surface affinity than tetramethylammonium (TMA+). Further, the adsorption of the I- anions is strictly limited to the first molecular layer beneath the liquid-vapor interface, which is followed by several layers of their depletion. On the other hand, the net negative charge of the surface layer, caused by the excess amount of I- with respect to TMA+, is compensated by a diffuse layer of adsorbed TMA+ cations, extending to or beyond the fourth molecular layer beneath the liquid surface.

3.
Int J Biol Macromol ; 232: 123336, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36708905

RESUMEN

Chitosan coatings of 353 ± 12 nm thickness were prepared on glass and zinc substrates by dip-coating method to study their barrier-behaviour. The coatings were chemically modified to increase their degree of acetylation (DA) from ca. 44 % up to ca. 98 % resulting a quasi-chitin coating. The effect of the acetylation reaction was studied by infrared spectroscopy, and the structural changes of the native and acetylated coatings were investigated by UV-Vis spectrophotometry and X-ray diffraction. The surface properties of the coated samples were characterized by wettability measurements - advancing water contact angle decreased from ca. 80° (native) to ca. 43° (fully acetylated) - and microscopic (SEM, AFM) studies. The barrier behaviour of the chitosan layer depending on the DA was evaluated by electrochemical impedance spectroscopy studies and with a special mesoporous silica - chitosan bilayer system by measuring the amount of dye (Rhodamine 6G) accumulated in the silica through the chitosan coating during an impregnation step. These methods showed significant decrease in the barrier-effect of the coatings with increasing DA (accumulation of approximately six times more dye and a reduction of charge transfer resistance by an order of magnitude), due to the structural and ionization changes in the coatings.


Asunto(s)
Quitosano , Quitosano/química , Quitina/química , Agua , Propiedades de Superficie , Dióxido de Silicio , Materiales Biocompatibles Revestidos/química
4.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34578555

RESUMEN

Nanostructured photoactive systems are promising for applications such as air and water purification, including self-cleaning coatings. In this study, mesoporous TiO2 sol-gel coatings with different pore structures were prepared and modified with silver by two methods: the "mixing" method by adding AgNO3 to the precursor sol, and the "impregnation" method by immersing the samples in AgNO3 solution (0.03 and 1 M) followed by heat treatment. Our aim was to investigate the effects that silver modification has on the functional properties (e.g., those that are important for self-cleaning coatings). Transmittance, band gap energy, refractive index, porosity and thickness values were determined from UV-Vis spectroscopy measurements. Silver content and structure of the silver modified samples were characterized by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, High-resolution transmission electron microscopy and Energy Dispersive X-ray Spectrometry elemental mapping measurements. Wettability properties, including photoinduced wettability conversion behavior were investigated by water contact angle measurements. Photoactivity was studied under both UV and visible light with rhodamine 6G and methylene blue dye molecules, at the liquid-solid and air-solid interfaces modeling the operating conditions of self-cleaning coatings. Samples made with "impregnation" method showed better functional properties, in spite of their significantly lower silver content. The pore structure influenced the Ag content achieved by the "impregnation" method, and consequently affected their photoactivity.

5.
Chem Sci ; 11(12): 3228-3235, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34122829

RESUMEN

Self-division is one of the most common phenomena in living systems and one of the most important properties of life driven by internal mechanisms of cells. Design and engineering of synthetic cells from abiotic components can recreate a life-like function thus contributing to the understanding of the origin of life. Existing methods to induce the self-division of vesicles require external and non-autonomous triggers (temperature change and the addition of membrane precursors). Here we show that pH-responsive giant unilamellar vesicles on the micrometer scale can undergo self-division triggered by an internal autonomous chemical stimulus driven by an enzymatic (urea-urease) reaction coupled to a cross-membrane transport of the substrate, urea. The bilayer of the artificial cells is composed of a mixture of phospholipids (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and oleic acid molecules. The enzymatic reaction increases the pH in the lumen of the vesicles, which concomitantly changes the protonation state of the oleic acid in the inner leaflet of the bilayer causing the removal of the membrane building blocks into the lumen of the vesicles thus decreasing the inner membrane area with respect to the outer one. This process coupled to the osmotic stress (responsible for the volume loss of the vesicles) leads to the division of a mother vesicle into two smaller daughter vesicles. These two processes must act in synergy; none of them alone can induce the division. Overall, our self-dividing system represents a step forward in the design and engineering of a complex autonomous model of synthetic cells.

6.
Int J Biol Macromol ; 142: 423-431, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593734

RESUMEN

Chitosan (Chit) coatings were applied on zinc substrates by the dip-coating method. Subsequently, the coatings were impregnated with a corrosion inhibitor, 2-Acetylamino-5-mercapto-1,3,4-thiadiazole (AcAMT) to obtain an increased anticorrosive effect. The coating thickness and the AcAMT accumulation were determined using UV-Vis spectroscopy on glass and quartz substrates, respectively. The surface morphology and coverage were investigated with atomic force microscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization techniques were used to investigate the protective properties of the impregnated coatings. The chitosan coatings facilitated the accumulation of the corrosion inhibitor inside the polymeric matrix (a multiplication of 380 times compared to the impregnating solution concentration was calculated), channeling high amounts of AcAMT to the Zn surface, which resulted in an inhibition efficiency of >90%. This effect demonstrates the applicability of chitosan coatings as carriers for corrosion inhibitors, significantly reducing the amount of inhibitor needed to achieve good anticorrosive effects.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos/química , Corrosión , Tiadiazoles/química , Zinc/química , Espectroscopía Dieléctrica , Ensayo de Materiales , Microscopía de Fuerza Atómica , Estructura Molecular , Análisis Espectral , Propiedades de Superficie
7.
ACS Omega ; 4(19): 18465-18471, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31720550

RESUMEN

One of the main approaches for contact angle determination using sessile drops with a missing apex (e.g., because of the presence of the needle tip) is the polynomial drop-profile fitting method. The major disadvantage of this fitting procedure is that the derived contact angle is highly sensitive to the polynomial order and the number of pixels involved in the actual fit. In the present work, an easily implementable method is introduced to effectively tackle these drawbacks. Instead of fitting the drop-profile itself, the polynomial fitting is applied to the difference between the drop profile and the circumcircle, independently for both sides of the drop. The derivative value of this difference at the contact point is used to correct the slope obtained analytically from the circumcircle. It is shown that this approach allows the robust determination of the contact angle with high (≤0.6°) accuracy in a straightforward manner, and the results are not affected by the actual contact angle, drop volume, or the resolution of the captured image. Validation of this new approach is also given in the contact angle range of 20°-150° by comparing the results to the values calculated by the Young-Laplace fit.

8.
Carbohydr Polym ; 215: 63-72, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981371

RESUMEN

Chitosan (Chit) coatings were prepared on zinc and glass substrates by dip-coating method. The coatings were impregnated with a non-toxic compound, indigo carmine (IC). The novel, eco-friendly, IC-loaded chitosan coatings were characterized morpho-structurally, and their corrosion protection behavior was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The surface properties of the coated samples were evaluated by wettability measurements. The thickness of the native chitosan layers and the stability of the impregnated layers in terms of dye release on glass substrates were studied by UV-vis spectrophotometry. The good corrosion inhibiting efficiency of the coatings (>90%) was attributed to the ionic crosslinking of the positively charged Chit with negatively charged IC. The Chit-IC coatings can be successfully used as model systems for chitosan-based coatings incorporating ionic inhibitors and in less demanding applications, such as temporary protective coatings for metals, removable on demand by scrubbing with mild acidic solutions.

9.
Carbohydr Polym ; 136: 137-45, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572339

RESUMEN

Chitosan and bilayered--Rhodamine 6G impregnated silica-chitosan--coatings (300-3000 nm thick) were prepared and investigated as a model for controlled drug release. Properties of native, ionically (sodium triphosphate) and covalently (glutaraldehyde) cross-linked layers of chitosan in contact with aqueous phase (modeling human blood pH of ca. 7.3) were investigated. The cross-linking was confirmed by attenuated total reflection (ATR) Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS) and solid state (13)C nuclear magnetic resonance (NMR) spectroscopy. The evolution of advancing water contact angles as a function of time was measured, and from the results restricted mobility of polymer segments in the interfacial layer of cross-linked chitosan coatings were assumed. Spectroscopic ellipsometry measurements showed that covalent cross-linking leads to a lowered, while ionic cross-linking to an increased swelling degree of chitosan layers. Despite the swelling behavior both cross-linked chitosan layers showed significant retard effect on dye release from the bilayered coatings.


Asunto(s)
Quitosano/química , Colorantes/química , Portadores de Fármacos/química , Rodaminas/química , Dióxido de Silicio/química , Preparaciones de Acción Retardada , Humanos , Concentración de Iones de Hidrógeno , Permeabilidad , Porosidad , Agua/química
10.
Langmuir ; 26(4): 2694-9, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20141210

RESUMEN

We present the studies on the structure and optical properties of bidisperse Stöber silica nanoparticulate Langmuir films prepared at the air/water interface in a Wilhelmy film balance and transferred onto glass slides using the Langmuir-Blodgett technique. Three different compositions (covered area ratios: 4:1; 1:1, and 1:4) of two bidisperse systems were used in the experiments. Bidisperse samples (B1 and B2) were prepared by mixing the appropriate amount of monodisperse sols of particles with 61 and 100 nm diameters (B1) and those with 37 and 100 nm diameters (B2). By surface pressure-area isotherms and (transmission and scanning) electron microscopy images we provide information about the structure of the films. Optical properties of the supported films were measured with UV-vis spectroscopy and the transmittance spectra were evaluated in terms of an optical model which allows monotonous in-depth variation of the refractive index across the film. (1) We have found that the refractive index decreased from the substrate-layer interface toward the air-layer interface when the smaller particles were in majority, and increased otherwise. That would suggest that the smaller particles of each bidisperse system can be positioned at the air side of the film if they are in minority in the sample and they can be situated on the substrate if they are in majority. The scanning electron microscope images of bidisperse films supported the in-depth film structure suggested by optical studies.


Asunto(s)
Membranas Artificiales , Nanopartículas/química , Dióxido de Silicio/química , Tamaño de la Partícula , Propiedades de Superficie
11.
Langmuir ; 24(21): 12575-80, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18850690

RESUMEN

Multifunctional Langmuir-Blodgett (LB) films were fabricated on the surface of glass substrates using sol-gel derived ZnO and SiO2 particles. ZnO particles of 6 and 110 nm diameter were synthesized according to the methods of Meulenkamp and Seelig et al. (Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566; Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H. Mater. Chem. Phys. 2003, 80, 257). Silica particles of 37 and 96 nm were prepared by the Stober method (Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62). Alternate deposition of monoparticulate Langmuir films of SiO2 and ZnO nanoparticles provided complex (six- and nine-layered) LB films with both antireflective and photocatalytic properties. The LB films were investigated with scanning electron microscopy (morphology and structure) and UV-vis spectroscopy (optical properties and stability). The photocatalytic activity was measured by immersing the UV-irradiated films into an aqueous solution of Methyl Orange and following the photodegradation of the dye by optical spectroscopy. Adding ZnO particles to the silica films slightly lowered the antireflection property but ensured strong photocatalytic activity. Both the photocatalytic activity and antireflection properties were proved to be sensitive to the sequence of the silica and ZnO layers, with optimum properties in the case of nine-layered films with a repeated (SiO2-ZnO-ZnO) structure.

12.
Phys Chem Chem Phys ; 9(48): 6359-70, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18060166

RESUMEN

Stöber silica nanoparticles of diameter about 45, 60 and 100 nm and different hydrophobicity are used to produce monolayers at a water-air interface. Both the surface pressure-area isotherms and the reflectivity angle of incidence curves of the layers have been measured in a Wilhelmy film balance. The contact angle of the as-prepared particles have been determined from the isotherms by two different evaluation methods, and compared to those obtained from in situ scanning angle reflectometry (SAR) measurements. SAR is proved to be an effective tool for the estimation of contact angles on nanoparticles of different wettability, using a modified version of the previously published gradient layer model (E. Hild, T. Seszták, D. Völgyes and Z. Hórvölgyi, Prog. Colloid Polym. Sci., 2004, 125, 61, ref. 1) for evaluation. The results are in fairly good agreement with those determined from the non-dissipative part of the isotherms of the as prepared particles, assuming a weakly cohesive film model (S. Bordács, A. Agod and Z. Hórvölgyi, Langmuir, 2006, 22, 6944, ref. 2). It seems that the traditional way to calculate the contact angle from the film balance experiments (J.H. Clint and N. Quirke, Colloids Surf., A, 1993, 78, 277, ref. 3) results in unreasonably high contact angles for the investigated systems and the homogeneous layer optical model gives unrealistic film thickness values in the case of hydrophobic particles.


Asunto(s)
Membranas Artificiales , Nanopartículas/química , Refractometría , Dióxido de Silicio/química , Aire , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Tamaño de la Partícula , Presión , Propiedades de Superficie , Agua/química , Humectabilidad
13.
Langmuir ; 23(10): 5445-51, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17407332

RESUMEN

Two-dimensional molecular dynamics computer simulation has been developed to model the compression of Langmuir films composed of spherical nanoparticles with arbitrary size distribution. We demonstrate that the usual assumption in the determination of interparticle potentials from the surface pressure vs area isotherms (i.e., monodisperse particles in perfect hexagonal order) leads to a systematic overestimation of the characteristic length of the interaction. On the basis of the results of the simulation, we propose a correction method to improve the traditional way of determining the interparticle potentials. We use the corrected particle-particle interactions to explore the correlation between the broadness of the size distribution and several structural parameters (decay length of pair-correlation function, global orientational order parameter, mean, and standard deviation of number of neighbors). Due to the uniaxial compression and the stiffness of the particulate layer, the surface pressure is not a scalar field. We investigate the effect of polydispersity on the anisotropy and the fluctuation of the surface pressure tensor in Langmuir films during uniaxial compression.

14.
Langmuir ; 22(20): 8416-23, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16981757

RESUMEN

The validity of various effective medium approximations (EMAs) (Bruggeman, Maxwell-Garnett) was studied for nanostructured systems, where the scale of inhomogeneities is comparable to the wavelength. Langmuir-Blodgett (LB) layers of Stöber silica nanospheres of diameters between 40 and 129 nm are excellent model structures for the experimental verification of the validity of the EMA methods in spectroscopic ellipsometry (SE) evaluation. Nanostructured mono- and multilayered silica films were investigated by SE and reflectance spectroscopy. The effective refractive index and film thickness were determined from the results of multiparameter fitting of SE spectra in the 300-759 nm wavelength region. The distribution of the effective refractive index in the particulate films was calculated assuming an ideal close-packed arrangement of particles. The average deviation from such a structure was deduced from the corrected model by introducing a "fill factor". In the EMA approximation, the spherical shape of the silica particle determines the optical behavior, rather than the "depth distribution" of silica or porosity. Therefore, the shape of particles has a dominant effect on the optical properties of nanoparticulate LB films.

15.
Langmuir ; 22(16): 6944-50, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16863243

RESUMEN

The collapse mechanism of microparticulate Langmuir films was studied experimentally in the present work. Using a Wilhelmy film balance, surface pressure vs area isotherms were determined, and the particle removal during the compression was examined by video-microscope and by naked eye. Upon compressing partially wettable 75 microm diameter surface modified glass beads at liquid (water or aqueous surfactant solution)-air (or n-octane) interfaces, different collapse mechanisms were visualized depending on the wettability of the particles. At low contact angles (below 40 degrees ) irreversible particle removal was observed as a consequence of a particulate line-by-line collapse mechanism. At higher contact angles a buckling-type collapse mechanism was revealed without particle removal from the liquid interface. In the case of irreversible particle removal we assessed the contact angles from the nondissipative part of the isotherm. These values were found to be in reasonable agreement with those determined directly on the beads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...