Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 73: 26-37, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671979

RESUMEN

The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The ß-carotene 15,15'-dioxygenase (BCO) cleaves ß-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated ß-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous ß-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the ß-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.Blh led to a considerable reduction in ß-carotene level, but less than 5% of the consumed ß-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.


Asunto(s)
Yarrowia , Antioxidantes , Hidroxitolueno Butilado/metabolismo , Detergentes/metabolismo , Polisorbatos/metabolismo , Vitamina A/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo
2.
Nucleic Acids Res ; 42(13): 8486-99, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24981510

RESUMEN

In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a ß-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability.


Asunto(s)
ADN Ribosómico , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Glucano Endo-1,3-beta-D-Glucosidasa/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Rojo Congo , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotinamidasa/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 40(11): 4892-903, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362748

RESUMEN

In eukaryotic cells, ribosomal DNA (rDNA) forms the basis of the nucleolus. In Saccharomyces cerevisiae, 100-200 copies of a 9.1-kb rDNA repeat exist as a tandem array on chromosome XII. The stability of this highly repetitive array is maintained through silencing. However, the precise mechanisms that regulate rDNA silencing are poorly understood. Here, we report that S. cerevisiae Ydr026c, which we name NTS1 silencing protein 1 (Nsi1), plays a significant role in rDNA silencing. By studying the subcellular localization of 159 nucleolar proteins, we identified 11 proteins whose localization pattern is similar to that of Net1, a well-established rDNA silencing factor. Among these proteins is Nsi1, which is associated with the NTS1 region of rDNA and is required for rDNA silencing at NTS1. In addition, Nsi1 physically interacts with the known rDNA silencing factors Net1, Sir2 and Fob1. The loss of Nsi1 decreases the association of Sir2 with NTS1 and increases histone acetylation at NTS1. Furthermore, Nsi1 contributes to the longevity of yeast cells. Taken together, our findings suggest that Nsi1 is a new rDNA silencing factor that contributes to rDNA stability and lifespan extension in S. cerevisiae.


Asunto(s)
ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/fisiología , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/química , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
4.
Protein Cell ; 2(6): 487-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21748599

RESUMEN

An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Oncogénicas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Prueba de Complementación Genética , Lípidos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Músculo Esquelético/citología , Proteínas Oncogénicas/genética , Peroxisomas/metabolismo , Plásmidos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Ratas , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae , Factores de Transcripción/genética , Transformación Genética
5.
Aging (Albany NY) ; 3(3): 319-24, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21415463

RESUMEN

The target of rapamycin (TOR) pathway regulates cell growth and aging in various organisms. In Saccharomyces cerevisiae, silent information regulator 2 (Sir2) modulates cellular senescence. Moreover, Sir2 plays a crucial role in promoting ribosomal DNA (rDNA) stability and longevity under TOR inhibition. Here we review the implication of rDNA stabilizers in longevity, discuss how Sir2 stabilizes rDNA under TOR inhibition and speculate on the link between sumoylation and Sir2-related pro-aging pathways.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Epigénesis Genética , Inestabilidad Genómica , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sumoilación
6.
Nucleic Acids Res ; 39(4): 1336-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20947565

RESUMEN

The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatment and nitrogen starvation, both of which cause inactivation of TOR complex 1 (TORC1), lead to enhanced association of Sir2 with ribosomal DNA (rDNA) in Saccharomyces cerevisiae. TORC1 inhibition increases transcriptional silencing of RNA polymerase II-transcribed gene integrated at the rDNA locus and reduces homologous recombination between rDNA repeats that causes formation of toxic extrachromosomal rDNA circles. In addition, TORC1 inhibition induces deacetylation of histones at rDNA. We also found that Pnc1 and Net1 are required for enhancement of association of Sir2 with rDNA under TORC1 inhibition. Taken together, our findings suggest that inhibition of TORC1 signaling stabilizes the rDNA locus by enhancing association of Sir2 with rDNA, thereby leading to extension of replicative lifespan in S. cerevisiae.


Asunto(s)
ADN Ribosómico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Sirtuina 2/metabolismo , Acetilación , Proteínas de Ciclo Celular/fisiología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/ultraestructura , Silenciador del Gen , Histonas/metabolismo , Nicotinamidasa/metabolismo , Nitrógeno/metabolismo , Proteínas Nucleares/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal
7.
Mol Cells ; 27(5): 539-46, 2009 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-19466602

RESUMEN

In Saccharomyces cerevisiae, ribosomal protein L7, one of the approximately 46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between Rpl7a and Rpl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its sub-cellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knock-out mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Células Cultivadas , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Intrones/genética , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Relación Estructura-Actividad
8.
Yeast ; 25(4): 301-11, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18350525

RESUMEN

In Saccharomyces cerevisiae, one-step PCR-mediated modification of chromosomal genes allows fast and efficient tagging of yeast proteins with various epitopes at the C- or N-terminus. For many purposes, C-terminal tagging is advantageous in that the expression pattern of epitope tag is comparable to that of the authentic protein and the possibility for the tag to affect normal folding of polypeptide chain during translation is minimized. As experiments are getting complicated, it is often necessary to construct several fusion proteins tagged with various kinds of epitopes. Here, we describe development of a series of plasmids that allow efficient and economical switching of C-terminally tagged epitopes, using just one set of universal oligonucleotide primers. Containing a variety of epitopes (GFP, TAP, GST, Myc, HA and FLAG tag) and Kluyveromyces lactis URA3 gene as a selectable marker, the plasmids can be used to replace any MX6 module-based C-terminal epitope tag with one of the six epitopes. Furthermore, the plasmids also allow additional C-terminal epitope tagging of proteins in yeast cells that already carry MX6 module-based gene deletion or C-terminal epitope tag.


Asunto(s)
Epítopos/genética , Vectores Genéticos , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Epítopos/metabolismo , Marcación de Gen , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biochem Biophys Res Commun ; 369(2): 401-6, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18282465

RESUMEN

Higher plants, protists and fungi possess cyanide-resistant respiratory pathway, which is mediated by alternative oxidase (AOX). The activity of AOX has been found to be dependent on several regulatory mechanisms including gene expression and posttranslational regulation. In the present study, we report that the presence of cyanide in culture medium remarkably retarded the growth of alo1/alo1 mutant of Candida albicans, which lacks d-arabinono-1,4-lactone oxidase (ALO) that catalyzes the final step of d-erythroascorbic acid (EASC) biosynthesis. Measurement of respiratory activity and Western blot analysis revealed that increase in the intracellular EASC level induces the expression of AOX in C. albicans. AOX could still be induced by antimycin A, a respiratory inhibitor, in the absence of EASC, suggesting that several factors may act in parallel pathways to induce the expression of AOX. Taken together, our results suggest that EASC plays important roles in activation of cyanide-resistant respiration in C. albicans.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Candida albicans/metabolismo , Cianuros/administración & dosificación , Farmacorresistencia Fúngica/fisiología , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Candida albicans/citología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Mitocondriales , Proteínas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...