Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2948, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618709

RESUMEN

Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Hematopoyesis , Factor Estimulante de Colonias de Granulocitos/genética , Células Madre Hematopoyéticas , Humanos , Neutrófilos
2.
Front Immunol ; 7: 499, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895643

RESUMEN

BACKGROUND: Pseudomonas aeruginosa airway infections are a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Azithromycin improves the related clinical outcomes, but its mechanisms of action remain poorly understood. We tested the hypothesis that azithromycin downregulates P. aeruginosa-induced pro-inflammatory responses by modifying release of bacterial proteins. METHODS: We monitored inflammatory markers in lungs of CF mutant mice and their littermate controls in response to conditioned media (CM) collected from the reference P. aeruginosa PAO1 strain cultured in the presence or in the absence of azithromycin. A mass spectrometry-based proteomic approach was applied to examine whether the macrolide elicits a differential release of bacterial proteins. RESULTS: CM collected from azithromycin-untreated PAO1 cultures induced powerful pro-inflammatory neutrophil-dominated responses. Azithromycin attenuated the responses, mainly of macrophage chemoattractant protein-1, tumor necrosis factor-α, and interferon-γ, in CF but not in wild-type mice. Proteomic analysis showed that azithromycin upregulated an array of bacterial proteins including those associated with regulation of immune functions and with repair and resolution of inflammatory responses like the chaperone DnaK and the S-adenosylmethionine synthase, while it downregulated the extracellular heme acquisition protein HasA and the catalytic enzyme lysylendopeptidase. CONCLUSION: Supernatants collected from cultures of the bacterial strain PAO1 represent a novel experimental model to trigger in vivo lung inflammatory responses that should be closer to those obtained with live bacteria, but without bacterial infection. Combined with a bactericidal effect, complex regulation of bacterial innate immune and metabolic factors released in the cultured medium by the action of the macrolide can contribute to its anti-inflammatory effects.

3.
Clin Pharmacol ; 8: 127-140, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27703398

RESUMEN

Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.

4.
Expert Opin Investig Drugs ; 25(4): 423-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26878157

RESUMEN

INTRODUCTION: Twenty-six years after the identification of the gene responsible for cystic fibrosis (CF), controversies still surround the pathogenesis of the disease that continues to burden and shorten lives. Therefore, finding effective therapeutic strategies that target the basic defect of CF is crucially needed. AREAS COVERED: This review offers a comprehensive survey of fundamental therapies in early stages of development for the treatment of CF. The first part describes recent strategies targeting the basic defect either at the gene or at the transcript level. The second part summarizes a panel of novel strategies targeting protein repair. The third part reports strategies targeting non-CFTR channels. EXPERT OPINION: Recent major breakthroughs in CF therapy have been made, raising hope to find a cure for CF. Apart from Vertex corrector and potentiator molecules (lumacaftor, ivacaftor, VX-661) and from ataluren, used to correct nonsense mutations, most compounds being currently tested are in very early (I-II) phases of development and definitive clinical results are keenly expected. Among the broad list of molecules and strategies being tested, the QR-010 compound and inhibitors of phosphodiesterase type 5 (sildenafil, vardenafil) could reveal a strong potentiality as therapeutic candidates to cure CF.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Animales , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...