Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(28): 15865-15874, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38955350

RESUMEN

Geosmin, a ubiquitous volatile sesquiterpenoid of microbiological origin, is causative for deteriorating the quality of many foods, beverages, and drinking water, by eliciting an undesirable "earthy/musty" off-flavor. Moreover, and across species from worm to human, geosmin is a volatile, chemosensory trigger of both avoidance and attraction behaviors, suggesting its role as semiochemical. Volatiles typically are detected by chemosensory receptors of the nose, which have evolved to best detect ecologically relevant food-related odorants and semiochemicals. An insect receptor for geosmin was recently identified in flies. A human geosmin-selective receptor, however, has been elusive. Here, we report on the identification and characterization of a human odorant receptor for geosmin, with its function being conserved in orthologs across six mammalian species. Notably, the receptor from the desert-dwelling kangaroo rat showed a more than 100-fold higher sensitivity compared to its human ortholog and detected geosmin at low nmol/L concentrations in extracts from geosmin-producing actinomycetes.


Asunto(s)
Naftoles , Receptores Odorantes , Sesquiterpenos , Animales , Humanos , Naftoles/metabolismo , Naftoles/química , Naftoles/análisis , Sesquiterpenos/metabolismo , Sesquiterpenos/análisis , Sesquiterpenos/química , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Ratas , Feromonas/metabolismo , Feromonas/química , Feromonas/análisis , Odorantes/análisis
2.
J Agric Food Chem ; 72(9): 4888-4896, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394621

RESUMEN

Grapevine (Vitis vinifera) is one of the most important perennial fruit plants. The variety Riesling stands out by developing a characteristic petrol-like odor note during aging, elicited by the aroma compound 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN). The UV-dependent TDN contents differ largely among Rieslings grown in the northern versus the southern hemisphere. Highest TDN concentrations were found in Australian Rieslings, where TDN is a scoring ingredient. In contrast, in Rieslings from Europe, for example, TDN may be a tending cause of rejection. A human receptor for TDN has been unknown. Here, we report on the identification of OR8H1 as a TDN-selective odorant receptor, out of a library of 766 odorant receptor variants. OR8H1 is selectively tuned to six carbon ring structures, identified by screening a collection of 180 key food odorants, using a HEK-293 cell-based cAMP luminescence assay equipped with the GloSensor technology.


Asunto(s)
Naftalenos , Receptores Odorantes , Vitis , Vino , Humanos , Vino/análisis , Receptores Odorantes/genética , Células HEK293 , Australia , Vitis/química , Odorantes/análisis , Frutas/química
3.
Food Chem ; 426: 136492, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295052

RESUMEN

4-Methylphenol is a food-related odor-active volatile with a high recognition factor, due to its horse stable-like, fecal odor quality. Its ambivalent hedonic impact as key aroma compound, malodor, and semiochemical has spurred the search for its cognate, chemosensory odorant receptors across species. A human odorant receptor for the highly characteristic 4-methylphenol has been elusive. Here, we identified and characterized human receptor OR9Q2 to be tuned to purified 4-methylphenol, but not to its contaminant isomer 3-methylphenol. This highly selective function of OR9Q2 complements an exclusive phenol detection gap in the ancient, most broadly tuned human odorant receptor OR2W1. Moreover, a 4-methylphenol function is evolutionary conserved in phylogenetically related OR9Q2 orthologs from chimpanzee, mouse, and cow. Notably, the cow receptor outperformed human OR9Q2 10-fold in signal strength, consonant with previous reports of 4-methylphenol as a bovine pheromone. Our results suggest OR9Q2 as best sensor for the key food odorant, malodor, and semiochemical 4-methylphenol.


Asunto(s)
Odorantes , Receptores Odorantes , Femenino , Animales , Bovinos , Humanos , Ratones , Caballos , Odorantes/análisis , Receptores Odorantes/genética , Fenoles , Feromonas
4.
J Chem Inf Model ; 63(7): 2014-2029, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36696962

RESUMEN

With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.


Asunto(s)
Receptores Odorantes , Humanos , Receptores Odorantes/genética , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Odorantes , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Proteínas de Unión al GTP/metabolismo , Ligandos
5.
iScience ; 25(11): 105269, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36300000

RESUMEN

All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals.

6.
Food Chem ; 375: 131680, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857413

RESUMEN

Mammals perceive a multitude of odorants by their chemical sense of olfaction, a high-dimensional stimulus-detection system, with hundreds of narrowly or broadly tuned receptors, enabling pattern recognition by the brain. Cognate receptor-agonist information, however, is sparse, and the role of broadly tuned odorant receptors for encoding odor quality remains elusive. Here, we screened IL-6-HaloTag®-OR2W1 and haplotypes against 187 out of 230 defined key food odorants using the GloSensor™ system in HEK-293 cells, yielding 48 new agonists. Altogether, key food odorants represent about two-thirds of now 153 reported agonists of OR2W1, the highest number of agonists known for a mammalian odorant receptor. In summary, we characterized OR2W1 as a human odorant receptor, with a chemically diverse but exclusive receptive range, complementary to chemical subgroups covered by evolutionary younger, highly selective receptors. Our data suggest OR2W1 to be suited for participating in the detection of many foodborne odorants.


Asunto(s)
Odorantes , Receptores Odorantes , Animales , Alimentos , Células HEK293 , Humanos , Olfato
7.
J Agric Food Chem ; 69(37): 10999-11005, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34496214

RESUMEN

Furanones formed during the Maillard reaction often are natural aroma-determining compounds found in numerous foods. Prominent economically relevant representatives are the structural homologues Furaneol and sotolone, which are important natural flavoring compounds because of their distinct caramel- and seasoning-like odor qualities. These, however, cannot be predicted by the odorants' molecular shape, rather their receptors' activation parameters help to decipher the encoding of odor quality. Here, the distinct odor qualities of Furaneol and sotolone suggested an activation of at least two out of our ca. 400 different odorant receptor types, which are the molecular biosensors of our chemical sense of olfaction. While an odorant receptor has been identified for sotolone, a receptor specific for Furaneol has been elusive. Using a bidirectional screening approach employing 616 receptor variants and 187 key food odorants in a HEK-293 cell-based luminescence assay, we newly identified OR5M3 as a receptor specifically activated by Furaneol and homofuraneol.


Asunto(s)
Receptores Odorantes , Furanos , Células HEK293 , Humanos , Odorantes/análisis , Receptores Odorantes/genética , Olfato
8.
FASEB J ; 35(6): e21638, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34047404

RESUMEN

Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.


Asunto(s)
Evolución Molecular , Análisis de los Alimentos/métodos , Odorantes/análisis , Feromonas/análisis , Pirazinas/análisis , Receptores Odorantes/metabolismo , Olfato , Animales , Humanos , Ratones , Feromonas/metabolismo , Filogenia , Pirazinas/metabolismo , Receptores Odorantes/genética
9.
FASEB J ; 35(2): e21274, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464692

RESUMEN

The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.


Asunto(s)
Secuencia Conservada , AMP Cíclico/metabolismo , Receptores Odorantes/química , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Evolución Molecular , Ratones , Mutación , Dominios Proteicos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transducción de Señal
10.
Nat Commun ; 11(1): 3460, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651365

RESUMEN

The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Tubérculo Olfatorio/efectos de los fármacos , Animales , Dopamina/farmacología , Masculino , Mesencéfalo/citología , Ratones , Modelos Teóricos , Estriado Ventral/efectos de los fármacos , Estriado Ventral/metabolismo
11.
Cell Mol Life Sci ; 77(11): 2157-2179, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31435697

RESUMEN

Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.


Asunto(s)
Cobre/metabolismo , Receptores Odorantes/química , Compuestos de Sulfhidrilo/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Filogenia , Receptores Odorantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...