Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Islets ; 15(1): 2189873, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36987915

RESUMEN

We previously developed a deep learning-based web service (IsletNet) for an automated counting of isolated pancreatic islets. The neural network training is limited by the absent consensus on the ground truth annotations. Here, we present a platform (IsletSwipe) for an exchange of graphical opinions among experts to facilitate the consensus formation. The platform consists of a web interface and a mobile application. In a small pilot study, we demonstrate the functionalities and the use case scenarios of the platform. Nine experts from three centers validated the drawing tools, tested precision and consistency of the expert contour drawing, and evaluated user experience. Eight experts from two centers proceeded to evaluate additional images to demonstrate the following two use case scenarios. The Validation scenario involves an automated selection of images and islets for the expert scrutiny. It is scalable (more experts, images, and islets may readily be added) and can be applied to independent validation of islet contours from various sources. The Inquiry scenario serves the ground truth generating expert in seeking assistance from peers to achieve consensus on challenging cases during the preparation for IsletNet training. This scenario is limited to a small number of manually selected images and islets. The experts gained an opportunity to influence IsletNet training and to compare other experts' opinions with their own. The ground truth-generating expert obtained feedback for future IsletNet training. IsletSwipe is a suitable tool for the consensus finding. Experts from additional centers are welcome to participate.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Testimonio de Experto , Proyectos Piloto , Trasplante de Islotes Pancreáticos/métodos , Redes Neurales de la Computación
2.
J Phys Chem A ; 122(21): 4861-4868, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29741896

RESUMEN

Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.

3.
Langmuir ; 31(42): 11508-15, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26439598

RESUMEN

Multicomponent Langmuir monolayers are important models of organic coatings of naturally occurring water-vapor interfaces such as the surfaces of oceans or aerosol particles. We investigated mixed monolayers comprised of palmitic acid, C15H31COOH (PA) and 1-bromoalkanes of different chain length (C5, C10, and C16) at the air-water interface employing classical molecular dynamics simulations. Different composition ratios and lateral compression of the monolayers were considered. The structural parameters, such as density profiles, and deuterium order parameter, evaluated as functions of composition and the lateral film packing, provide microscopic information about organization and dynamics of the mixed monolayers. Simulations demonstrate that stable and well mixed monolayers are formed by the mixtures of PA and BrC16H33 (BrCl6), whereas the two considered shorter bromoalkanes, BrC5H11 (BrC5) and BrC10H21 (BrC10), do not form stable films. This is in accord with earlier experimental studies. Under high lateral pressures, in PA/BrC10 mixed systems molecules of the bromoalkane readily flip in the monolayer and subsequently leave the film, while the molecules of the longer BrC16 are expelled from the PA film but no flipping occurs. These results suggest that the film collapse under pressure is preceded by squeezing-out of bromoalkanes from the PA monolayer.

4.
J Phys Chem A ; 119(34): 8991-9, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26214577

RESUMEN

Multiple molecules adsorbed on the surface of nanosized ice particles can either remain isolated or form aggregates, depending on their mobility. Such (non)aggregation may subsequently drive the outcome of chemical reactions that play an important role in atmospheric chemistry or astrochemistry. We present a molecular beam experiment in which the controlled number of guest molecules is deposited on the water and argon nanoparticles in a pickup chamber and their aggregation is studied mass spectrometrically. The studied molecules (HCl, CH3Cl, CH3CH2CH2Cl, C6H5Cl, CH4, and C6H6) form large aggregates on argon nanoparticles. On the other hand, no aggregation is observed on ice nanoparticles. Molecular simulations confirm the experimental results; they reveal a high degree of aggregation on the argon nanoparticles and show that the molecules remain mostly isolated on the water ice surface. This finding will influence the efficiency of ice grain-mediated synthesis (e.g., in outer space) and is also important for the cluster science community because it shows some limitations of pickup experiments on water clusters.

5.
J Phys Chem A ; 118(6): 1052-66, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24450495

RESUMEN

The adsorption, mobility, and self-association of naphthalene (NPH) and 1-methylnaphthalene (1MN), two of the simplest polycyclic aromatic hydrocarbons (PAHs), at the surface of liquid water at 289 K were investigated using classical molecular dynamics (MD) simulations and free energy profile calculations across the water-vapor interface. Both NPH and 1MN, which exhibit a strong preference to be adsorbed at the water-vapor interface, are found to readily self-associate at the water surface, adopting mostly configurations with distinctly nonparallel arrangement of the two monomers. The additional methyl group of 1MN represents only a minor perturbation in terms of the hydration properties, interfacial orientation, and self-association with respect to NPH. Implications of the observed self-association behavior for fluorescence spectroscopy of NPH and 1MN in aqueous interfacial environment are discussed.


Asunto(s)
Simulación de Dinámica Molecular , Movimiento (Física) , Naftalenos/química , Vapor , Adsorción , Dimerización , Conformación Molecular , Termodinámica , Vacio
6.
J Phys Chem A ; 117(38): 9205-15, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23971412

RESUMEN

Free energy profiles associated with transfer of chlorinated and brominated halomethane molecules from the gas phase across the water-vapor interface to the aqueous phase were calculated using classical molecular dynamics simulations. The investigated species include chloromethane (CH3Cl), bromomethane (CH3Br), dichloromethane (CH2Cl2), dibromomethane (CH2Br2), chloroform (CHCl3), and bromoform (CHBr3). The employed halomethane force field was tuned by scaling up the atomic charges to reproduce the experimental hydration free energies. The computed free energy profiles have a minimum at the water-vapor interface of about 12-15 kJ·mol(-1) relative to full hydration in the bulk liquid. This implies that the halomethanes exhibit enhanced interfacial concentrations in systems with large surface area per unit volume, such as air bubbles dispersed in water or water droplets dispersed in air. Implications for water treatment as well as for atmospheric chemistry are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA