Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231480

RESUMEN

Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here, we make the unexpected observation that early intermittent feeding of mice with a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify new biological pathways, related to actin filament organisation, whose alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insight into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat atherosclerotic cardiovascular disease.

2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255976

RESUMEN

Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFß) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.


Asunto(s)
Aneurisma de la Aorta Torácica , Rotura de la Aorta , Humanos , Animales , Porcinos , Pez Cebra , Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/terapia , Modelos Animales , Contracción Muscular , Mamíferos
3.
Cells ; 12(20)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37887328

RESUMEN

Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.


Asunto(s)
Enfermedades Cardiovasculares , Depresores del Sistema Nervioso Central , Humanos , Neuroinmunomodulación , Sistema Nervioso Central , Corazón , Depresores del Sistema Nervioso Central/farmacología , Arterias
4.
Nat Cardiovasc Res ; 2(3): 290-306, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37621765

RESUMEN

Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells; aberrant tolerance-regulating transcripts of clonally expanded T cells; T cell exhaustion; Treg-TH17 T cell conversion; and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall.

5.
Science ; 381(6660): 897-906, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616346

RESUMEN

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Asunto(s)
Envejecimiento , Senescencia Celular , Corazón , MicroARNs , Densidad Microvascular , Miocardio , Semaforina-3A , Corazón/inervación , Microcirculación , MicroARNs/genética , MicroARNs/metabolismo , Semaforina-3A/genética , Animales , Ratones , Envejecimiento/genética , Envejecimiento/patología , Masculino , Ratones Endogámicos C57BL , Senescencia Celular/genética , Miocardio/patología , Axones
6.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228235

RESUMEN

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Corazón , Neuronas/fisiología , Encéfalo
7.
Eur Heart J ; 44(29): 2672-2681, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210082

RESUMEN

This review based on the ESC William Harvey Lecture in Basic Science 2022 highlights recent experimental and translational progress on the therapeutic targeting of the inflammatory components in atherosclerosis, introducing novel strategies to limit side effects and to increase efficacy. Since the validation of the inflammatory paradigm in CANTOS and COLCOT, efforts to control the residual risk conferred by inflammation have centred on the NLRP3 inflammasome-driven IL-1ß-IL6 axis. Interference with the co-stimulatory dyad CD40L-CD40 and selective targeting of tumour necrosis factor-receptor associated factors (TRAFs), namely the TRAF6-CD40 interaction in macrophages by small molecule inhibitors, harbour intriguing options to reduce established atherosclerosis and plaque instability without immune side effects. The chemokine system crucial for shaping immune cell recruitment and homoeostasis can be fine-tuned and modulated by its heterodimer interactome. Structure-function analysis enabled the design of cyclic, helical, or linked peptides specifically targeting or mimicking these interactions to limit atherosclerosis or thrombosis by blunting myeloid recruitment, boosting regulatory T cells, inhibiting platelet activity, or specifically blocking the atypical chemokine MIF without notable side effects. Finally, adventitial neuroimmune cardiovascular interfaces in advanced atherosclerosis show robust restructuring of innervation from perivascular ganglia and employ sensory neurons of dorsal root ganglia to enter the central nervous system and to establish an atherosclerosis-brain circuit sensor, while sympathetic and vagal efferents project to the celiac ganglion to create an atherosclerosis-brain circuit effector. Disrupting this circuitry by surgical or chemical sympathectomy limited disease progression and enhanced plaque stability, opening exciting perspectives for selective and tailored intervention beyond anti-inflammatory strategies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Aterosclerosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Macrófagos/patología , Quimiocinas/farmacología , Quimiocinas/uso terapéutico
8.
Front Cell Dev Biol ; 11: 1117368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793445

RESUMEN

Two pairs of biological systems acting over long distances have recently been defined as major participants in the regulation of physiological and pathological tissue reactions: i) the nervous and vascular systems form various blood-brain barriers and control axon growth and angiogenesis; and ii) the nervous and immune systems emerge as key players to direct immune responses and maintain blood vessel integrity. The two pairs have been explored by investigators in relatively independent research areas giving rise to the concepts of the rapidly expanding topics of the neurovascular link and neuroimmunology, respectively. Our recent studies on atherosclerosis led us to consider a more inclusive approach by conceptualizing and combining principles of the neurovascular link and neuroimmunology: we propose that the nervous system, the immune system and the cardiovascular system undergo complex crosstalks in tripartite rather than bipartite interactions to form neuroimmune cardiovascular interfaces (NICIs).

10.
Nature ; 605(7908): 152-159, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477759

RESUMEN

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/prevención & control , Progresión de la Enfermedad , Ganglios Espinales , Ganglios Simpáticos , Ratones , Neuronas/fisiología , Placa Aterosclerótica/prevención & control
11.
Theranostics ; 11(4): 1864-1876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33408786

RESUMEN

Rationale: The high expression of Galectin-3 (Gal3) in macrophages of atherosclerotic plaques suggests its participation in atherosclerosis pathogenesis, and raises the possibility to use it as a target to image disease severity in vivo. Here, we explored the feasibility of tracking atherosclerosis by targeting Gal3 expression in plaques of apolipoprotein E knockout (ApoE-KO) mice via PET imaging. Methods: Targeting of Gal3 in M0-, M1- and M2 (M2a/M2c)-polarized macrophages was assessed in vitro using a Gal3-F(ab')2 mAb labeled with AlexaFluor®488 and 89Zr- desferrioxamine-thioureyl-phenyl-isothiocyanate (DFO). To visualize plaques in vivo, ApoE-KO mice were injected i.v. with 89Zr-DFO-Gal3-F(ab')2 mAb and imaged via PET/CT 48 h post injection. Whole length aortas harvested from euthanized mice were processed for Sudan-IV staining, autoradiography, and immunostaining for Gal3, CD68 and α-SMA expression. To confirm accumulation of the tracer in plaques, ApoE-KO mice were injected i.v. with Cy5.5-Gal3-F(ab')2 mAb, euthanized 48 h post injection, followed by cryosections of the body and acquisition of fluorescent images. To explore the clinical potential of this imaging modality, immunostaining for Gal3, CD68 and α-SMA expression were carried out in human plaques. Single cell RNA sequencing (scRNA-Seq) analyses were performed to measure LGALS3 (i.e. a synonym for Gal3) gene expression in each macrophage of several subtypes present in murine or human plaques. Results: Preferential binding to M2 macrophages was observed with both AlexaFluor®488-Gal3-F(ab')2 and 89Zr-DFO-Gal3-F(ab')2 mAbs. Focal and specific 89Zr-DFO-Gal3-F(ab')2 mAb uptake was detected in plaques of ApoE-KO mice by PET/CT. Autoradiography and immunohistochemical analyses of aortas confirmed the expression of Gal3 within plaques mainly in macrophages. Moreover, a specific fluorescent signal was visualized within the lesions of vascular structures burdened by plaques in mice. Gal3 expression in human plaques showed similar Gal3 expression patterns when compared to their murine counterparts. Conclusions: Our data reveal that 89Zr-DFO-Gal3-F(ab')2 mAb PET/CT is a potentially novel tool to image atherosclerotic plaques at different stages of development, allowing knowledge-based tailored individual intervention in clinically significant disease.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Deferoxamina/química , Galectina 3/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patología , Radioisótopos/metabolismo , Circonio/metabolismo , Animales , Femenino , Galectina 3/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo
12.
Front Immunol ; 10: 1101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164888

RESUMEN

Vascular smooth muscle cells (VSMCs) constitute the major cells in the media layer of arteries, and are critical to maintain the integrity of the arterial wall. They participate in arterial wall remodeling, and play important roles in atherosclerosis throughout all stages of the disease. Studies demonstrate that VSMCs can adopt numerous phenotypes depending on inputs from endothelial cells (ECs) of the intima, resident cells of the adventitia, circulating immune cells, hormones, and plasma lipoproteins. This plasticity allows them to perform multiple tasks in physiology and disease. In this minireview, we focus on a previously underappreciated activity of VSMCs, i.e., their impact on atherosclerosis immunity via formation of artery tertiary lymphoid organs (ATLOs).


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/metabolismo , Susceptibilidad a Enfermedades , Inmunidad , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Adventicia/inmunología , Envejecimiento/inmunología , Envejecimiento/metabolismo , Animales , Aterosclerosis/patología , Biomarcadores , Plasticidad de la Célula/inmunología , Citocinas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/complicaciones , Hiperlipidemias/inmunología , Hiperlipidemias/metabolismo , Mediadores de Inflamación/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/inmunología , Miocitos del Músculo Liso/inmunología , Placa Aterosclerótica/etiología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
13.
Nat Med ; 25(3): 529, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30718908

RESUMEN

In the version of this article originally published, a sentence was erroneously included in the author contributions, and information regarding second shared authorship was missing from the author contributions. The following should not have been included in the author contributions: "C.W. and A.J.R.H. supervised the work presented in Figs. 1, 2, 5, 6; P.Z. and C.S. supervised the work presented in Figs. 3, 4." Additionally, this sentence should have appeared at the beginning of the author contributions: "These authors contributed equally: C.W., P.F.Z., C.S., and A.J.R.H." The errors have been corrected in the print, PDF and HTML versions of the article.

14.
Nat Med ; 25(3): 496-506, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692699

RESUMEN

Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (KD~140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, Aß plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, Aß plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, Aß-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Apolipoproteínas E/inmunología , Enfermedades de las Arterias Carótidas/inmunología , Plexo Coroideo/inmunología , Disfunción Cognitiva/inmunología , Complemento C1q/inmunología , Vía Clásica del Complemento/inmunología , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/inmunología , Animales , Aorta/inmunología , Aorta/patología , Aterosclerosis/inmunología , Aterosclerosis/patología , Encéfalo/inmunología , Encéfalo/patología , Arterias Carótidas/inmunología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/patología , Plexo Coroideo/patología , Disfunción Cognitiva/patología , Complemento C5 , Femenino , Humanos , Leucocitos , Masculino , Ratones Noqueados para ApoE , Microscopía Fluorescente , Persona de Mediana Edad , Placa Amiloide/inmunología , Placa Amiloide/patología , Isoformas de Proteínas/inmunología , ARN Interferente Pequeño
16.
Cancer Cell ; 33(1): 75-90.e7, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29249692

RESUMEN

Catecholamines stimulate epithelial proliferation, but the role of sympathetic nerve signaling in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Catecholamines promoted ADRB2-dependent PDAC development, nerve growth factor (NGF) secretion, and pancreatic nerve density. Pancreatic Ngf overexpression accelerated tumor development in LSL-Kras+/G12D;Pdx1-Cre (KC) mice. ADRB2 blockade together with gemcitabine reduced NGF expression and nerve density, and increased survival of LSL-Kras+/G12D;LSL-Trp53+/R172H;Pdx1-Cre (KPC) mice. Therapy with a Trk inhibitor together with gemcitabine also increased survival of KPC mice. Analysis of PDAC patient cohorts revealed a correlation between brain-derived neurotrophic factor (BDNF) expression, nerve density, and increased survival of patients on nonselective ß-blockers. These findings suggest that catecholamines drive a feedforward loop, whereby upregulation of neurotrophins increases sympathetic innervation and local norepinephrine accumulation.


Asunto(s)
Catecolaminas/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Adrenérgicos/farmacología , Animales , Carcinoma in Situ/metabolismo , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Ratones Transgénicos , Neoplasias Pancreáticas/patología , Gemcitabina , Neoplasias Pancreáticas
18.
Front Immunol ; 7: 387, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27777573

RESUMEN

Artery tertiary lymphoid organs (ATLOs) are atherosclerosis-associated lymphoid aggregates with varying degrees of complexity ranging from small T/B-cell clusters to well-structured lymph node-like though unencapsulated lymphoid tissues. ATLOs arise in the connective tissue that surrounds diseased arteries, i.e., the adventitia. ATLOs have been identified in aged atherosclerosis-prone hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice: they are organized into distinct immune cell compartments, including separate T-cell areas, activated B-cell follicles, and plasma cell niches. Analyses of ATLO immune cell subsets indicate antigen-specific T- and B-cell immune reactions within the atherosclerotic arterial wall adventitia. Moreover, ATLOs harbor innate immune cells, including a large component of inflammatory macrophages, B-1 cells, and an aberrant set of antigen-presenting cells. There is marked neoangiogenesis, irregular lymphangiogenesis, neoformation of high endothelial venules, and de novo synthesis of lymph node-like conduits. Molecular mechanisms of ATLO formation remain to be identified though media vascular smooth muscle cells may adopt features of lymphoid tissue organizer-like cells by expressing lymphorganogenic chemokines, i.e., CXCL13 and CCL21. Although these data are consistent with the view that ATLOs participate in primary T- and B-cell responses against elusive atherosclerosis-specific autoantigens, their specific protective or disease-promoting roles remain to be identified. In this review, we discuss what is currently known about ATLOs and their potential impact on atherosclerosis and make attempts to define challenges ahead.

19.
Bio Protoc ; 6(11)2016 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335895

RESUMEN

Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by lipid deposition, plaque formation, and immune cell infiltration. Innate and adaptive immune cells infiltrate the artery during development of the disease. Moreover, advanced disease leads to formation of artery tertiary lymphoid organs in the adventitia (Grabner et al., 2009; Hu et al., 2015). Various and diverse types of immune cells have been identified in the aorta adventitia vs atherosclerotic plaques (Elewa et al., 2016; Galkina et al., 2006; Lotzer et al., 2010; Mohanta et al., 2016; Mohanta et al., 2014; Moos et al., 2005; Srikakulapu et al., 2016; Zhao et al., 2004). There are conflicting reports on the number and subtypes of immune cells in the aorta depending on the age of the animals, the protocol that is used to obtain single cell suspensions, and the dietary conditions of the mice (Campbell et al., 2012; Clement et al., 2015; Galkina et al., 2006; Kyaw et al., 2012). The number of immune cells in the aorta differs as much as tenfold using different protocols (Butcher et al., 2012; Galkina et al., 2006; Gjurich et al., 2015; Grabner et al., 2009; Hu et al., 2015). These discrepant results call for a protocol that robustly documents bona fide aorta cells rather than those in the surrounding tissues or blood. Critical methodological hurdles include the removal of adjacent adipose tissue and small paraaortic lymph nodes lining the entire aortic tree that are not visible by the naked eye. A dissection microscope is therefore recommended. Moreover protocols of aorta preparations should ascertain that lymphocyte aggregates referred to as fat associated lymphoid clusters (FALCs) (Benezech et al., 2015; Elewa et al., 2015) that are often present at the border between the adipose tissue and the adventitia are removed before enzyme digestion. We propose - besides other approaches (Hu et al., 2015; Mohanta et al., 2014) - a combination of immunohistochemical staining and fluorescence activated cell sorter (FACS) analyses from single cell suspensions to quantify the cells of interest. This protocol describes isolation of single cells from mouse aorta for FACS and other analysis.

20.
Arterioscler Thromb Vasc Biol ; 36(6): 1174-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27102965

RESUMEN

OBJECTIVE: Explore aorta B-cell immunity in aged apolipoprotein E-deficient (ApoE(-/-)) mice. APPROACH AND RESULTS: Transcript maps, fluorescence-activated cell sorting, immunofluorescence analyses, cell transfers, and Ig-ELISPOT (enzyme-linked immunospot) assays showed multilayered atherosclerosis B-cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B-cell-related transcriptomes were identified, and transcript atlases revealed highly territorialized B-cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B-cell genes, including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm although intima plaques preferentially expressed molecules involved in non-B effector responses toward B-cell-derived mediators, that is, Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B-cell recruitment. ATLO B-2 B cells included naive, transitional, follicular, germinal center, switched IgG1(+), IgA(+), and IgE(+) memory cells, plasmablasts, and long-lived plasma cells. ATLOs recruited large numbers of B-1 cells whose subtypes were skewed toward interleukin-10(+) B-1b cells versus interleukin-10(-) B-1a cells. ATLO B-1 cells and plasma cells constitutively produced IgM and IgG and a fraction of plasma cells expressed interleukin-10. Moreover, ApoE(-/-) mice showed increased germinal center B cells in renal lymph nodes, IgM-producing plasma cells in the bone marrow, and higher IgM and anti-MDA-LDL (malondialdehyde-modified low-density lipoprotein) IgG serum titers. CONCLUSIONS: ATLOs orchestrate dichotomic, territorialized, and multilayered B-cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging.


Asunto(s)
Envejecimiento/inmunología , Aorta/inmunología , Enfermedades de la Aorta/inmunología , Apolipoproteínas E/deficiencia , Aterosclerosis/inmunología , Linfocitos B/inmunología , Estructuras Linfoides Terciarias/inmunología , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Autoanticuerpos/sangre , Autoinmunidad , Linfocitos B/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunoglobulinas/sangre , Memoria Inmunológica , Lipoproteínas LDL/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Masculino , Malondialdehído/análogos & derivados , Malondialdehído/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Transducción de Señal , Estructuras Linfoides Terciarias/metabolismo , Estructuras Linfoides Terciarias/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...