Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676257

RESUMEN

A notable signalling mechanism employed by mammalian innate immune signalling pathways uses nucleotide-based second messengers such as 2'3'-cGAMP and 2'-5'-oligoadenylates (OAs), which bind and activate STING and RNase L, respectively. Interestingly, the involvement of nucleotide second messengers to activate antiviral responses is evolutionarily conserved, as evidenced by the identification of an antiviral cGAMP-dependent pathway in Drosophila. Using a mass spectrometry approach, we identified several members of the ABCF family in human, mouse and Drosophila cell lysates as 2'-5' OA-binding proteins, suggesting an evolutionarily conserved function. Biochemical characterization of these interactions demonstrates high-affinity binding of 2'-5' OA to ABCF1, dependent on phosphorylated 2'-5' OA and an intact Walker A/B motif of the ABC cassette of ABCF1. As further support for species-specific interactions with 2'-5' OA, we additionally identified that the metabolic enzyme Decr1 from mouse, but not human or Drosophila cells, forms a high-affinity complex with 2'-5' OA. A 1.4 Å co-crystal structure of the mouse Decr1-2'-5' OA complex explains high-affinity recognition of 2'-5' OA and the mechanism of species specificity. Despite clear evidence of physical interactions, we could not identify profound antiviral functions of ABCF1, ABCF3 or Decr1 or 2'-5' OA-dependent regulation of cellular translation rates, as suggested by the engagement of ABCF proteins. Thus, although the biological consequences of the here identified interactions need to be further studied, our data suggest that 2'-5' OA can serve as a signalling hub to distribute a signal to different recipient proteins.


Asunto(s)
Antivirales , Drosophila , Animales , Ratones , Nucleótidos , Mamíferos
2.
Sci Rep ; 13(1): 5162, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997583

RESUMEN

The induction of antiviral innate immunity by systemic immunization with live virus can be employed to positively impact the response to therapeutic vaccination. We previously demonstrated that systemic immunization with a non-replicating MVA encoding CD40 ligand (CD40L) enhances innate immune cell activation and function, and triggers potent antitumor CD8+ T cell responses in different murine tumor models. Antitumor efficacy was increased when combined with tumor targeting antibodies. Here we report the development of TAEK-VAC-HerBy (TVH), a first-in-class human tumor antibody enhanced killing (TAEK) vaccine based on the non-replicating MVA-BN viral vector. It encodes the membrane bound form of human CD40L, HER2 and the transcription factor Brachyury. TVH is designed for therapeutic use in HER2- or Brachyury-expressing cancer patients in combination with tumor targeting antibodies. To preclude possible oncogenic activities in infected cells and to prevent binding of vaccine-encoded HER2 by monoclonal antibodies trastuzumab and pertuzumab, genetic modifications of HER2 were introduced in the vaccine. Brachyury was genetically modified to prevent nuclear localization of the protein thereby inhibiting its transcriptional activity. CD40L encoded in TVH enhanced human leukocyte activation and cytokine secretion in vitro. Lastly, TVH intravenous administration to non-human primates was proven immunogenic and safe in a repeat-dose toxicity study. Nonclinical data presented here highlight TVH as a first-in-class immunotherapeutic vaccine platform currently under clinical investigation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Ratones , Animales , Ligando de CD40/genética , Neoplasias/tratamiento farmacológico , Linfocitos T CD8-positivos , Anticuerpos Antineoplásicos , Virus Vaccinia/genética
3.
Nat Commun ; 12(1): 7009, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853303

RESUMEN

The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.


Asunto(s)
Inmunidad Innata , Ácidos Nucleicos/química , Ácidos Nucleicos/inmunología , Proteínas Virales/química , Proteínas Virales/inmunología , Animales , Antivirales , Drosophila melanogaster , Evolución Molecular , Humanos , Ratones , Proteínas Serina-Treonina Quinasas , Proteómica , Interferencia de ARN , ARN Bicatenario , Especificidad de la Especie , Células THP-1
4.
mBio ; 11(4)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665273

RESUMEN

RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αßγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α.IMPORTANCE RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR.


Asunto(s)
Factor 2B Eucariótico de Iniciación/genética , Interacciones Huésped-Patógeno , Iniciación de la Cadena Peptídica Traduccional , Phlebovirus/genética , Proteínas no Estructurales Virales/metabolismo , eIF-2 Quinasa/genética , Células A549 , Animales , Línea Celular , Chlorocebus aethiops , Factor 2B Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Phlebovirus/fisiología , Fosforilación , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidores
5.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232186

RESUMEN

Sandfly fever Sicilian virus (SFSV) is one of the most widespread and frequently identified members of the genus Phlebovirus (order Bunyavirales, family Phenuiviridae) infecting humans. Being transmitted by Phlebotomus sandflies, SFSV causes a self-limiting, acute, often incapacitating febrile disease ("sandfly fever," "Pappataci fever," or "dog disease") that has been known since at least the beginning of the 20th century. We show that, similarly to other pathogenic phleboviruses, SFSV suppresses the induction of the antiviral type I interferon (IFN) system in an NSs-dependent manner. SFSV NSs interfered with the TBK1-interferon regulatory factor 3 (IRF3) branch of the RIG-I signaling pathway but not with NF-κB activation. Consistently, we identified IRF3 as a host interactor of SFSV NSs. In contrast to IRF3, neither the IFN master regulator IRF7 nor any of the related transcription factors IRF2, IRF5, and IRF9 were bound by SFSV NSs. In spite of this specificity for IRF3, NSs did not inhibit its phosphorylation, dimerization, or nuclear accumulation, and the interaction was independent of the IRF3 activation or multimerization state. In further studies, we identified the DNA-binding domain of IRF3 (amino acids 1 to 113) as sufficient for NSs binding and found that SFSV NSs prevented the association of activated IRF3 with the IFN-ß promoter. Thus, unlike highly virulent phleboviruses, which either destroy antiviral host factors or sequester whole signaling chains into inactive aggregates, SFSV modulates type I IFN induction by directly masking the DNA-binding domain of IRF3.IMPORTANCE Phleboviruses are receiving increased attention due to the constant discovery of new species and the ongoing spread of long-known members of the genus. Outbreaks of sandfly fever were reported in the 19th century, during World War I, and during World War II. Currently, SFSV is recognized as one of the most widespread phleboviruses, exhibiting high seroprevalence rates in humans and domestic animals and causing a self-limiting but incapacitating disease predominantly in immunologically naive troops and travelers. We show how the nonstructural NSs protein of SFSV counteracts the upregulation of the antiviral interferon (IFN) system. SFSV NSs specifically inhibits promoter binding by IFN transcription factor 3 (IRF3), a molecular strategy which is unique among phleboviruses and, to our knowledge, among human pathogenic RNA viruses in general. This IRF3-specific and stoichiometric mechanism, greatly distinct from the ones exhibited by the highly virulent phleboviruses, correlates with the intermediate level of pathogenicity of SFSV.


Asunto(s)
ADN/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/farmacología , Fiebre por Flebótomos/metabolismo , Phlebovirus/metabolismo , Psychodidae/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Antivirales/farmacología , ADN/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Fiebre por Flebótomos/tratamiento farmacológico , Fiebre por Flebótomos/virología , Phlebovirus/efectos de los fármacos , Phlebovirus/genética , Fosforilación , Psychodidae/genética , Psychodidae/virología , Transducción de Señal , Proteínas no Estructurales Virales/genética
6.
Proc Natl Acad Sci U S A ; 114(11): E2106-E2115, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28251928

RESUMEN

IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2'-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2'-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Caperuzas de ARN/química , ARN Mensajero/química , ARN Mensajero/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Humanos , Metilación , Ratones , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Posición Específica de Matrices de Puntuación , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad
7.
PLoS Pathog ; 13(2): e1006195, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28158275

RESUMEN

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Asunto(s)
Coronaviridae/enzimología , Infecciones por Coronavirus/inmunología , Endonucleasas/inmunología , Evasión Inmune/fisiología , Proteínas Virales/inmunología , Animales , Coronaviridae/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Biomol Screen ; 21(4): 354-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26762502

RESUMEN

Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Ensayos Analíticos de Alto Rendimiento , Hidrazonas/farmacología , Virus de la Fiebre del Valle del Rift/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Células A549 , Antivirales/química , Benzamidas/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica , Genes Reporteros , Humanos , Hidrazonas/química , Proteínas Luminiscentes/antagonistas & inhibidores , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Virus Reordenados , Virus de la Fiebre del Valle del Rift/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos , Proteína Fluorescente Roja
9.
Nat Commun ; 6: 8192, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26382858

RESUMEN

The flow of genetic information from DNA to protein requires polymerase-II-transcribed RNA characterized by the presence of a 5'-cap. The cap-binding complex (CBC), consisting of the nuclear cap-binding protein (NCBP) 2 and its adaptor NCBP1, is believed to bind all capped RNA and to be necessary for its processing and intracellular localization. Here we show that NCBP1, but not NCBP2, is required for cell viability and poly(A) RNA export. We identify C17orf85 (here named NCBP3) as a cap-binding protein that together with NCBP1 forms an alternative CBC in higher eukaryotes. NCBP3 binds mRNA, associates with components of the mRNA processing machinery and contributes to poly(A) RNA export. Loss of NCBP3 can be compensated by NCBP2 under steady-state conditions. However, NCBP3 becomes pivotal under stress conditions, such as virus infection. We propose the existence of an alternative CBC involving NCBP1 and NCBP3 that plays a key role in mRNA biogenesis.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas de Unión a Caperuzas de ARN/genética , ARN Mensajero/metabolismo , Animales , Supervivencia Celular , Chlorocebus aethiops , Cromatografía Liquida , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Macrófagos/metabolismo , Ratones , Células 3T3 NIH , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas de Unión a Caperuzas de ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Células Vero
10.
Curr Opin Virol ; 11: 31-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25668758

RESUMEN

Viruses are the most abundant pathogens on earth. A fine-tuned framework of intervening pathways is in place in mammalian cells to orchestrate the cellular defence against these pathogens. Key for this system is sensor proteins that recognise specific features associated with nucleic acids of incoming viruses. Here we review the current knowledge on cytoplasmic sensors for viral nucleic acids. These sensors induce expression of cytokines, affect cellular functions required for virus replication and directly target viral nucleic acids through degradation or sequestration. Their ability to respond to a given nucleic acid is based on both the differential specificity of the individual proteins and the downstream signalling or adaptor proteins. The cooperation of these multiple proteins and pathways plays a key role in inducing successful immunity against virus infections.


Asunto(s)
Citoplasma/virología , Inmunidad Innata , Ácidos Nucleicos/metabolismo , Receptores Inmunológicos/metabolismo , Virus/inmunología , Animales , Humanos , Mamíferos
11.
J Virol ; 88(6): 3464-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24403578

RESUMEN

UNLABELLED: The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. IMPORTANCE: Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.


Asunto(s)
Proteínas F-Box/metabolismo , Fosfoproteínas/metabolismo , Fiebre del Valle del Rift/metabolismo , Virus de la Fiebre del Valle del Rift/metabolismo , Factores de Transcripción TFII/metabolismo , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Línea Celular , Proteínas F-Box/genética , Humanos , Fosfoproteínas/genética , Proteolisis , Fiebre del Valle del Rift/enzimología , Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Factor de Transcripción TFIIH , Factores de Transcripción TFII/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/genética , Factores de Virulencia/genética
12.
PLoS Pathog ; 9(10): e1003663, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098121

RESUMEN

Viruses that generate capped RNA lacking 2'O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2'O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2'O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2'O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2'O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Caperuzas de ARN/metabolismo , Virosis/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Chlorocebus aethiops , Factores Eucarióticos de Iniciación/genética , Células HeLa , Humanos , Metilación , Ratones , Ratones Noqueados , Caperuzas de ARN/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN , Células Vero , Virosis/genética
13.
Cell Host Microbe ; 13(3): 336-46, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23498958

RESUMEN

Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Nucleocápside/inmunología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Nucleocápside/química , Nucleocápside/genética , Polifosfatos/metabolismo , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/virología , Virus ARN/química , Virus ARN/genética , ARN Viral/química , ARN Viral/genética , ARN Viral/inmunología , Receptores Inmunológicos , Transducción de Señal
14.
J Virol ; 87(11): 6150-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23536651

RESUMEN

Infection with human coronavirus 229E (HCoV-229E) is associated with the common cold and may result in pneumonia in immunocompromised patients. The viral spike (S) protein is incorporated into the viral envelope and mediates infectious entry of HCoV-229E into host cells, a process that depends on the activation of the S-protein by host cell proteases. However, the proteases responsible for HCoV-229E activation are incompletely defined. Here we show that the type II transmembrane serine proteases TMPRSS2 and HAT cleave the HCoV-229E S-protein (229E-S) and augment 229E-S-driven cell-cell fusion, suggesting that TMPRSS2 and HAT can activate 229E-S. Indeed, engineered expression of TMPRSS2 and HAT rendered 229E-S-driven virus-cell fusion insensitive to an inhibitor of cathepsin L, a protease previously shown to facilitate HCoV-229E infection. Inhibition of endogenous cathepsin L or TMPRSS2 demonstrated that both proteases can activate 229E-S for entry into cells that are naturally susceptible to infection. In addition, evidence was obtained that activation by TMPRSS2 rescues 229E-S-dependent cell entry from inhibition by IFITM proteins. Finally, immunohistochemistry revealed that TMPRSS2 is coexpressed with CD13, the HCoV-229E receptor, in human airway epithelial (HAE) cells, and that CD13(+) TMPRSS2(+) cells are preferentially targeted by HCoV-229E, suggesting that TMPRSS2 can activate HCoV-229E in infected humans. In sum, our results indicate that HCoV-229E can employ redundant proteolytic pathways to ensure its activation in host cells. In addition, our observations and previous work suggest that diverse human respiratory viruses are activated by TMPRSS2, which may constitute a target for antiviral intervention.


Asunto(s)
Catepsinas/metabolismo , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/enzimología , Mucosa Respiratoria/enzimología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Catepsinas/genética , Línea Celular , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Mucosa Respiratoria/virología , Serina Endopeptidasas/genética
15.
Nature ; 487(7408): 486-90, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22810585

RESUMEN

Viruses must enter host cells to replicate, assemble and propagate. Because of the restricted size of their genomes, viruses have had to evolve efficient ways of exploiting host cell processes to promote their own life cycles and also to escape host immune defence mechanisms. Many viral open reading frames (viORFs) with immune-modulating functions essential for productive viral growth have been identified across a range of viral classes. However, there has been no comprehensive study to identify the host factors with which these viORFs interact for a global perspective of viral perturbation strategies. Here we show that different viral perturbation patterns of the host molecular defence network can be deduced from a mass-spectrometry-based host-factor survey in a defined human cellular system by using 70 innate immune-modulating viORFs from 30 viral species. The 579 host proteins targeted by the viORFs mapped to an unexpectedly large number of signalling pathways and cellular processes, suggesting yet unknown mechanisms of antiviral immunity. We further experimentally verified the targets heterogeneous nuclear ribonucleoprotein U, phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine) kinase family and USP19 (ubiquitin-specific peptidase 19) as vulnerable nodes in the host cellular defence system. Evaluation of the impact of viral immune modulators on the host molecular network revealed perturbation strategies used by individual viruses and by viral classes. Our data are also valuable for the design of broad and specific antiviral therapies.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Virus/inmunología , Endopeptidasas/metabolismo , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunidad Innata/inmunología , Espectrometría de Masas , Sistemas de Lectura Abierta/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Especificidad por Sustrato , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Virus/metabolismo
16.
Nat Immunol ; 12(2): 137-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217758

RESUMEN

The 5' cap structures of higher eukaryote mRNAs have ribose 2'-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2'-O-methylation of mRNA remains elusive. Here we show that 2'-O-methylation of viral mRNA was critically involved in subverting the induction of type I interferon. We demonstrate that human and mouse coronavirus mutants lacking 2'-O-methyltransferase activity induced higher expression of type I interferon and were highly sensitive to type I interferon. Notably, the induction of type I interferon by viruses deficient in 2'-O-methyltransferase was dependent on the cytoplasmic RNA sensor Mda5. This link between Mda5-mediated sensing of viral RNA and 2'-O-methylation of mRNA suggests that RNA modifications such as 2'-O-methylation provide a molecular signature for the discrimination of self and non-self mRNA.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Coronavirus/fisiología , ARN Helicasas DEAD-box/metabolismo , Metiltransferasas/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Coronavirus/patogenicidad , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Humanos , Inmunidad Innata/genética , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1 , Metilación , Metiltransferasas/genética , Metiltransferasas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Viral/metabolismo , Receptor de Interferón alfa y beta/genética , Receptores de Reconocimiento de Patrones/genética , Ribosa/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Virulencia/genética , Replicación Viral/genética
17.
J Gen Virol ; 92(Pt 1): 71-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20861320

RESUMEN

Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-ß), although its non-structural protein (NSs) could inhibit the induction of IFN-ß if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-ß expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-ß transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.


Asunto(s)
Interferón beta/antagonistas & inhibidores , Interferón beta/biosíntesis , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Línea Celular , Vectores Genéticos , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Virus de la Fiebre del Valle del Rift/genética , Proteínas no Estructurales Virales/genética
18.
Vector Borne Zoonotic Dis ; 10(7): 701-3, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20854024

RESUMEN

Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, regularly accounts for large and severe outbreaks among humans and livestock in Africa and Arabia. Therefore, safe and efficient vaccines are highly needed. Here, we report the production of recombinant virus-like particles (VLPs) that, in addition to their similarity to RVFV particles, are able to express the viral nucleocapsid (N) gene. A single inoculation of 1 × 10(6) of these N-VLPs was sufficient to protect 100% of mice from infection with a lethal dose of 1 × 10(5) PFU of RVFV. Our study demonstrates that N-VLPs can be considered as a safe and efficient vaccine against the emerging pathogen RVFV, and that VLPs that actively produce a viral antigen may be considered a strategy to improve the immunogenicity of VLPs in general.


Asunto(s)
Proteínas de la Nucleocápside/inmunología , Fiebre del Valle del Rift/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Línea Celular , Cricetinae , Humanos , Ratones , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo
19.
Virol J ; 7: 50, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20187932

RESUMEN

BACKGROUND: Studies of the host response to infection often require quantitative measurement of the antiviral type I interferons (IFN-alpha/beta) in biological samples. The amount of IFN is either determined via its ability to suppress a sensitive indicator virus, by an IFN-responding reporter cell line, or by ELISA. These assays however are either time-consuming and lack convenient readouts, or they are rather insensitive and restricted to IFN from a particular host species. RESULTS: An IFN-sensitive, Renilla luciferase-expressing Rift Valley fever virus (RVFV-Ren) was generated using reverse genetics. Human, murine and avian cells were tested for their susceptibility to RVFV-Ren after treatment with species-specific IFNs. RVFV-Ren was able to infect cells of all three species, and IFN-mediated inhibition of viral reporter activity occurred in a dose-dependent manner. The sensitivity limit was found to be 1 U/ml IFN, and comparison with a standard curve allowed to determine the activity of an unknown sample. CONCLUSIONS: RVFV-Ren replicates in cells of several species and is highly sensitive to pre-treatment with IFN. These properties allowed the development of a rapid, sensitive, and species-independent antiviral assay with a convenient luciferase-based readout.


Asunto(s)
Bioensayo/métodos , Interferón Tipo I/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Aves , Línea Celular , Genes Reporteros , Humanos , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Ratones , Sensibilidad y Especificidad
20.
J Gen Virol ; 90(Pt 11): 2686-2694, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19625461

RESUMEN

SARS coronavirus (SARS-CoV) is known to efficiently suppress the induction of antiviral type I interferons (IFN-alpha/beta) in non-lymphatic cells through inhibition of the transcription factor IRF-3. Plasmacytoid dendritic cells, in contrast, respond to infection with production of high levels of IFNs. Here, we show that pretreatment of non-lymphatic cells with small amounts of IFN-alpha (IFN priming) partially overturns the block in IFN induction imposed by SARS-CoV. IFN priming combined with SARS-CoV infection substantially induced genes for IFN induction, IFN signalling, antiviral effector proteins, ubiquitination and ISGylation, antigen presentation and other cytokines and chemokines, whereas each individual treatment had no major effect. Curiously, however, despite this typical IFN response, neither IRF-3 nor IRF-7 was transported to the nucleus as a sign of activation. Taken together, our results suggest that (i) IFN, as it is produced by plasmacytoid dendritic cells, could enable tissue cells to launch a host response to SARS-CoV, (ii) IRF-3 and IRF-7 may be active at subdetectable levels, and (iii) SARS-CoV does not activate IRF-7.


Asunto(s)
Interferón-alfa/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Animales , Línea Celular , Núcleo Celular/química , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...