Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826042

RESUMEN

Sap is transported through numerous conduits in the xylem of woody plants along the path from the soil to the leaves. When all conduits are functional, vessel lumen diameter is a strong predictor of hydraulic conductivity. As vessels become embolized, sap movement becomes increasingly affected by factors operating at scales beyond individual conduits, creating resistances that result in hydraulic conductivity diverging from diameter-based estimates. These effects include pit resistances, connectivity, path length, network topology, and vessel or sector isolation. The impact of these factors varies with the level and distribution of emboli within the network, and manifest as alterations in the relationship between the number and diameter of embolized vessels with measured declines in hydraulic conductivity across vulnerability to embolism curves. Divergences between measured conductivity and diameter-based estimates reveal functional differences that arise because of species- and tissue-specific vessel network structures. Such divergences are not uniform, and xylem tissues may diverge in different ways and to differing degrees. Plants regularly operate under nonoptimal conditions and contain numerous embolized conduits. Understanding the hydraulic implications of emboli within a network and the function of partially embolized networks are critical gaps in our understanding of plants occurring within natural environments.

2.
Ann Bot ; 131(2): 287-300, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36420705

RESUMEN

BACKGROUND AND AIMS: Foliar water uptake (FWU) has been documented in many species and is increasingly recognized as a non-trivial factor in plant-water relationships. However, it remains unknown whether FWU is a widespread phenomenon in Pinus species, and how it may relate to needle traits such as the form and structure of stomatal wax plugs. In this contribution, these questions were addressed by studying FWU in current-year and 1-year-old needles of seven Pinus species. METHODS: We monitored FWU gravimetrically and analysed the needle surface via cryo-scanning electron microscopy. Additionally, we considered the effect of artificial wax erosion by application of the surfactant Triton X-100, which is able to alter wax crystals. KEY RESULTS: The results show for all species that (1) FWU occurred, (2) FWU is higher in old needles compared to young needles and (3) there is substantial erosion of stomatal wax plugs in old needles. FWU was highest in Pinus canariensis, which has a thin stomatal wax plug. Surfactant treatment enhanced FWU. CONCLUSIONS: The results of this study provide evidence for (1) widespread FWU in Pinus, (2) the influence of stomatal wax plugs on FWU and (3) age-related needle surface erosion.


Asunto(s)
Pinus , Tensoactivos , Transporte Biológico , Microscopía Electrónica de Rastreo , Agua
3.
Am J Bot ; 108(8): 1568-1575, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449081

RESUMEN

PREMISE: Phloem tissue allows for sugar transport along the entirety of a plant and, thus, is one of the most important anatomical structures related to growth. It is thought that the sugar-conducting sieve tube may overwinter and that its cells persist multiple seasons in deciduous trees. One possible overwintering strategy is to build up callose on phloem sieve plates to temporarily cease their function. We tested the hypothesis that five deciduous tree species produce callose on their sieve plates on a seasonal basis. METHODS: Young shoots of five deciduous tree species were sampled periodically between April 2019 and February 2020 in Edmonton, Alberta, Canada. After enzymatic digestion of cytoplasmic constituents, cross sections were imaged using scanning electron microscopy to observe and quantify the level of callose deposition at monthly intervals, and sieve plate pore size was measured. Using a conductivity apparatus, we measured xylem native embolism during these sampling periods. RESULTS: Contrary to past work on some of the same species, we found little evidence that sieve tubes overwinter by becoming occluded with callose. Instead, we found that most sieve plates remain open. Xylem embolism was minimal during the peak growing season, but increased over winter. CONCLUSIONS: Many species had been assumed to deposit callose on sieve plates over winter, though anatomical and phenological phloem data were sparse. Our data do not support this notion.


Asunto(s)
Embolia , Árboles , Glucanos , Floema , Estaciones del Año , Xilema
4.
New Phytol ; 229(3): 1431-1439, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32981122

RESUMEN

Bordered pits of many conifers include a torus-margo structure acting as a valve that prevents air from spreading between tracheids, although the extent of torus deflection as a function of applied pressure is not well known. Models were developed from images of pits in roots and stems of Picea mariana (Mill.) BSP. A computational solid mechanics approach was utilised to determine the extent of torus deflection from pressure applied to the torus and margo. Torus deflection increased in nonlinear fashion with applied pressure. The average pressure required for sealing the pit was 0.894 MPa for stems and 0.644 MPa for roots, although considerable variation was apparent between individual pits. The pits of roots were wider and deeper than those of stems. For stems, the pit depth did not increase with pit width; thus the torus displacement needed to seal the pit was less than for pits from roots. The pressure required to seal the pit depends upon anatomical characteristics such as pit width and pit depth. Although the torus displacement for sealing was greater for roots because of their greater depth, the pressures leading to sealing were not significantly different between roots and stems.


Asunto(s)
Picea , Tracheophyta , Cycadopsida , Raíces de Plantas
5.
Plant Cell Environ ; 42(8): 2422-2436, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30997689

RESUMEN

During periods of dehydration, water transport through xylem conduits can become blocked by embolism formation. Xylem embolism compromises water supply to leaves and may lead to losses in productivity or plant death. Vulnerability curves (VCs) characterize plant losses in conductivity as xylem pressures decrease. VCs are widely used to characterize and predict plant water use at different levels of water availability. Several methodologies for constructing VCs exist and sometimes produce different results for the same plant material. We directly compared four VC construction methods on stems of black cottonwood (Populus trichocarpa), a model tree species: dehydration, centrifuge, X-ray-computed microtomography (microCT), and optical. MicroCT VC was the most resistant, dehydration and centrifuge VCs were intermediate, and optical VC was the most vulnerable. Differences among VCs were not associated with how cavitation was induced but were related to how losses in conductivity were evaluated: measured hydraulically (dehydration and centrifuge) versus evaluated from visual information (microCT and optical). Understanding how and why methods differ in estimating vulnerability to xylem embolism is important for advancing knowledge in plant ecophysiology, interpreting literature data, and using accurate VCs in water flux models for predicting plant responses to drought.


Asunto(s)
Populus/fisiología , Xilema/fisiología , Fenómenos Biomecánicos , Modelos Biológicos , Óptica y Fotónica , Populus/metabolismo , Tomografía Computarizada por Rayos X/métodos , Agua/metabolismo , Microtomografía por Rayos X/métodos
6.
Tree Physiol ; 39(7): 1099-1108, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30901057

RESUMEN

Insect defoliation contributes to tree mortality under drought conditions. Defoliation-induced alterations to the vascular transport structure may increase tree vulnerability to drought; however, this has been rarely studied. To evaluate the response of tree vascular function following defoliation, 2-year-old balsam poplar were manually defoliated, and both physiological and anatomical measurements were made after allowing for re-foliation. Hydraulic conductivity measurements showed that defoliated trees had both increased vulnerability to embolism and decreased water transport efficiency, likely due to misshapen xylem vessels. Anatomical measurements revealed novel insights into defoliation-induced alterations to the phloem. Phloem sieve tube diameter was reduced in the stems of defoliated trees, suggesting reduced transport capability. In addition, phloem fibers were absent, or reduced in number, in stems, shoot tips and petioles of new leaves, potentially reducing the stability of the vascular tissue. Results from this study suggest that the defoliation leads to trees with increased risk for vascular dysfunction and drought-induced mortality through alterations in the vascular structure, and highlights a route through which carbon limitation can influence hydraulic dysfunction.


Asunto(s)
Floema , Xilema , Animales , Sequías , Hojas de la Planta , Árboles , Agua
7.
Plant Cell Environ ; 42(2): 466-479, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30074610

RESUMEN

The sugar conducting phloem in angiosperms is a high resistance pathway made up of sieve elements bounded by sieve plates. The high resistance generated by sieve plates may be a trade-off for promoting quick sealing in the event of injury. However, previous modeling efforts have demonstrated a wide variation in the contribution of sieve plates towards total sieve tube resistance. In the current study, we generated high resolution scanning electron microscope images of sieve plates from balsam poplar and integrated them into a mathematical model using Comsol Multiphysics software. We found that sieve plates contribute upwards of 85% towards total sieve tube resistance. Utilizing the Navier-Stokes equations, we found that oblong pores may create over 50% more resistance in comparison with round pores of the same area. Although radial water flows in phloem sieve tubes have been previously considered, their impact on alleviating pressure gradients has not been fully studied. Our novel simulations find that radial water flow can reduce pressure requirements by half in comparison with modeled sieve tubes with no radial permeability. We discuss the implication that sieve tubes may alleviate pressure requirements to overcome high resistances by regulating their membrane permeability along the entire transport pathway.


Asunto(s)
Modelos Teóricos , Floema/fisiología , Microscopía Electrónica de Rastreo , Presión Osmótica , Floema/ultraestructura , Populus/fisiología , Populus/ultraestructura , Agua/metabolismo
8.
Ecol Evol ; 8(3): 1758-1768, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435250

RESUMEN

Understanding local adaptation of tree populations to climate allows the development of assisted migration guidelines as a tool for forest managers to address climate change. Here, we study the relationship among climate, a wide range of physiological traits, and field performance of selected white spruce provenances originating from throughout the species range. Tree height, survival, cold hardiness, hydraulic, and wood anatomical traits were measured in a 32-year-old common garden trial, located in the center of the species range. Provenance performance included all combinations of high versus low survival and growth, with the most prevalent population differentiation for adaptive traits observed in cold hardiness. Cold hardiness showed a strong association with survival and was associated with cold winter temperatures at the site of seed origin. Tree height was mostly explained by the length of the growing season at the origin of the seed source. Although population differentiation was generally weak in wood anatomical and hydraulic traits, within-population variation was substantial in some traits, and a boundary analysis revealed that efficient water transport was associated with vulnerable xylem and low wood density, indicating that an optimal combination of high water transport efficiency and high cavitation resistance is not possible. Our results suggest that assisted migration prescriptions may be advantageous under warming climate, but pronounced trade-offs between survival and cold hardiness require a careful consideration of the distances of these transfers.

9.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046541

RESUMEN

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Asunto(s)
Carbono/deficiencia , Sequías , Transpiración de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Cambio Climático , Cycadopsida/fisiología , Magnoliopsida/fisiología , Dinámica Poblacional , Estrés Fisiológico
10.
Front Plant Sci ; 8: 598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473841

RESUMEN

Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species' responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy.

11.
Am J Bot ; 104(5): 719-732, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28526726

RESUMEN

PREMISE OF THE STUDY: Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. METHODS: We studied histological sections of balsam poplar (Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. KEY RESULTS: Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. CONCLUSIONS: The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem.


Asunto(s)
Acuaporinas/fisiología , Floema/fisiología , Proteínas de Plantas/fisiología , Populus/fisiología , Hojas de la Planta/fisiología
12.
J Integr Plant Biol ; 59(6): 356-389, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28296168

RESUMEN

Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.


Asunto(s)
Agua/fisiología , Xilema/fisiología , Sequías , Modelos Biológicos , Xilema/anatomía & histología
13.
Plant Cell Environ ; 40(6): 831-845, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27304704

RESUMEN

Variation in xylem vessel diameter is one of the most important parameters when evaluating plant water relations. This review provides a synthesis of the ecophysiological implications of variation in lumen diameter together with a summary of our current understanding of vessel development and its endogenous regulation. We analyzed inter-specific variation of the mean hydraulic vessel diameter (Dv ) across biomes, intra-specific variation of Dv under natural and controlled conditions, and intra-plant variation. We found that the Dv measured in young branches tends to stay below 30 µm in regions experiencing winter frost, whereas it is highly variable in the tropical rainforest. Within a plant, the widest vessels are often found in the trunk and in large roots; smaller diameters have been reported for leaves and small lateral roots. Dv varies in response to environmental factors and is not only a function of plant size. Despite the wealth of data on vessel diameter variation, the regulation of diameter is poorly understood. Polar auxin transport through the vascular cambium is a key regulator linking foliar and xylem development. Limited evidence suggests that auxin transport is also a determinant of vessel diameter. The role of auxin in cell expansion and in establishing longitudinal continuity during secondary growth deserve further study.


Asunto(s)
Xilema/anatomía & histología , Xilema/fisiología , Ácidos Indolacéticos/metabolismo , Magnoliopsida/anatomía & histología , Magnoliopsida/fisiología , Desarrollo de la Planta , Especificidad de la Especie
16.
Plant Cell Environ ; 39(10): 2210-20, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27342227

RESUMEN

Drought induces an increase in a tree's vulnerability to a loss of its hydraulic conductivity in many tree species, including two common in western Canada, trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera). Termed 'cavitation fatigue' or 'air-seeding fatigue', the mechanism of this phenomenon is not well understood, but hypothesized to be a result of damage to xylem pit membranes. To examine the validity of this hypothesis, the effect of drought on the porosity of pit membranes in aspen and balsam poplar was investigated. Controlled drought and bench dehydration treatments were used to induce fatigue and scanning electron microscopy (SEM) was used to image pit membranes for relative porosity evaluations from air-dried samples after ethanol dehydration. A significant increase in the diameter of the largest pore was found in the drought and dehydration treatments of aspen, while an increase in the percentage of porous pit membranes was found in the dehydration treatments of both species. Additionally, the location of the largest pore per pit membrane was observed to tend toward the periphery of the membrane.


Asunto(s)
Populus/metabolismo , Agua/metabolismo , Xilema/metabolismo , Transporte Biológico , Deshidratación , Hidrodinámica , Populus/ultraestructura , Xilema/ultraestructura
17.
Plant Cell Environ ; 39(9): 2085-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27037757

RESUMEN

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.


Asunto(s)
Ecosistema , Árboles/fisiología , Agua/fisiología , Ciclo Hidrológico
18.
New Phytol ; 209(1): 123-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26378984

RESUMEN

The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem.


Asunto(s)
Cycadopsida/fisiología , Magnoliopsida/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas , Agua/fisiología , Madera
19.
Plant Cell Environ ; 39(2): 272-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26177991

RESUMEN

Hybrid poplars are an important renewable forest resource known for their high productivity. At the same time, they are highly vulnerable to water stress. Identifying traits that can serve as indicators for growth performance remains an important task, particularly under field conditions. Understanding which trait combinations translate to improved productivity is key in order to satisfy the demand for poplar wood in an uncertain future climate. In this study, we compared hydraulic and leaf traits among five hybrid poplar clones at 10 plantations in central Alberta. We also assessed the variation of these traits between 2- to 3-year-old branches from the lower to mid-crown and current-year long shoots from the mid to upper crown. Our results showed that (1) hybrid poplars differed in key hydraulic parameters between branch type, (2) variation of hydraulic traits among clones was relatively large for some clones and less for others, and (3) strong relationships between measured hydraulic traits, such as vessel diameter, cavitation resistance, xylem-specific and leaf-specific conductivity and leaf area, were observed. Our results suggest that leaf size could serve as an additional screening tool when selecting for drought-tolerant genotypes in forest management and tree improvement programmes.


Asunto(s)
Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Árboles/fisiología , Xilema/fisiología , Geografía , Tamaño de los Órganos , Brotes de la Planta/fisiología , Carácter Cuantitativo Heredable , Agua
20.
Funct Plant Biol ; 43(6): 553-562, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480485

RESUMEN

Progress has been made in linking water transport in leaves with anatomical traits. However, most of our current knowledge about these links is based on studies that sampled phylogenetically distant species and covered a wide range of leaf size and morphology. Here we studied covariation of leaf anatomical traits and hydraulic capacity in five closely related hybrid poplar genotypes. Variation in stomatal conductance and leaf hydraulic conductance was not linked to vein density or other anatomical lamina properties. A strong correlation was found between stomatal conductance and the transport capacity of the petiole, estimated from the diameter and number of xylem vessels. An inverse relationship existed between leaf size and major vein density. The role of bundle sheath extensions is discussed. Our data suggests that petiole xylem is an important predictor of gas exchange capacity in poplar leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...