Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Microlife ; 5: uqae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665235

RESUMEN

On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.

3.
Sci Rep ; 12(1): 7410, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523845

RESUMEN

Ultrafine particles (UFP) acting as cloud condensation nuclei (CCN) are the driving force behind changing rainfall patterns. Recently observed weather extremes like floods and drought might be due to changing anthropogenic UFP emissions. However, the sources and budgets of anthropogenic primary and secondary particles are not well known. Based on airborne measurements we identified as a major contribution modern fossil fuel flue gas cleaning techniques to cause a doubling of global primary UFP number emissions. The subsequent enhancement of CCN numbers has several side effects. It's changing the size of the cloud droplets and delays raindrop formation, suppressing certain types of rainfall and increasing the residence time of water vapour in the atmosphere. This additional latent energy reservoir is directly available for invigoration of rainfall extremes. Additionally it's a further contribution to the column density of water vapour as a greenhouse gas and important for the infrared radiation budget. The localized but ubiquitous fossil fuel related UFP emissions and their role in the hydrological cycle, may thus contribute to regional or continental climate trends, such as increasing drought and flooding, observed within recent decades.

4.
Appl Opt ; 60(22): F6-F20, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612858

RESUMEN

Classification of outdoor point clouds is an intensely studied topic, particularly with respect to the separation of vegetation from the terrain and manmade structures. In the presence of many overhanging and vertical structures, the (relative) height is no longer a reliable criterion for such a separation. An alternative would be to apply supervised classification; however, thousands of examples are typically required for appropriate training. In this paper, an unsupervised and rotation-invariant method is presented and evaluated for three datasets with very different characteristics. The method allows us to detect planar patches by filtering and clustering so-called superpoints, whereby the well-known but suitably modified random sampling and consensus (RANSAC) approach plays a key role for plane estimation in outlier-rich data. The performance of our method is compared to that produced by supervised classifiers common for remote sensing settings: random forest as learner and feature sets for point cloud processing, like covariance-based features or point descriptors. It is shown that for point clouds resulting from airborne laser scans, the detection accuracy of the proposed method is over 96% and, as such, higher than that of standard supervised classification approaches. Because of artifacts caused by interpolation during 3D stereo matching, the overall accuracy was lower for photogrammetric point clouds (74-77%). However, using additional salient features, such as the normalized green-red difference index, the results became more accurate and less dependent on the data source.


Asunto(s)
Algoritmos , Mapeo Geográfico , Fenómenos Geológicos , Plantas , Tecnología de Sensores Remotos , Arqueología , Materiales de Construcción , Conjuntos de Datos como Asunto , Geografía , Alemania , Imagenología Tridimensional/métodos , Italia , Rayos Láser , Fotogrametría , Queensland , Erosión del Suelo
5.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200458, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34565226

RESUMEN

Coal seam gas (CSG) accounts for about one-quarter of natural gas production in Australia and rapidly increasing amounts globally. This is the first study worldwide using airborne measurement techniques to quantify methane (CH4) emissions from a producing CSG field: the Surat Basin, Queensland, Australia. Spatially resolved CH4 emissions were quantified from all major sources based on top-down (TD) and bottom-up (BU) approaches, the latter using Australia's UNFCCC reporting workflow. Based on our TD-validated BU inventory, CSG sources emit about 0.4% of the produced gas, comparable to onshore dry gas fields in the USA and The Netherlands, but substantially smaller than in other onshore regions, especially those where oil is co-produced (wet gas). The CSG CH4 emission per unit of gas production determined in this study is two to three times higher than existing inventories for the region. Our results indicate that the BU emission factors for feedlots and grazing cattle need review, possibly requiring an increase for Queensland's conditions. In some subregions, the BU estimate for gathering and boosting stations is potentially too high. The results from our iterative BU inventory process, which feeds into TD data, illustrate how global characterization of CH4 emissions could be improved by incorporating empirical TD verification surveys into national reporting. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

6.
PLoS One ; 15(7): e0233912, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32609779

RESUMEN

This article reports Australia's first confirmed ancient underwater archaeological sites from the continental shelf, located off the Murujuga coastline in north-western Australia. Details on two underwater sites are reported: Cape Bruguieres, comprising > 260 recorded lithic artefacts at depths down to -2.4 m below sea level, and Flying Foam Passage where the find spot is associated with a submerged freshwater spring at -14 m. The sites were discovered through a purposeful research strategy designed to identify underwater targets, using an iterative process incorporating a variety of aerial and underwater remote sensing techniques and diver investigation within a predictive framework to map the submerged landscape within a depth range of 0-20 m. The condition and context of the lithic artefacts are analysed in order to unravel their depositional and taphonomic history and to corroborate their in situ position on a pre-inundation land surface, taking account of known geomorphological and climatic processes including cyclone activity that could have caused displacement and transportation from adjacent coasts. Geomorphological data and radiometric dates establish the chronological limits of the sites and demonstrate that they cannot be later than 7000 cal BP and 8500 cal BP respectively, based on the dates when they were finally submerged by sea-level rise. Comparison of underwater and onshore lithic assemblages shows differences that are consistent with this chronological interpretation. This article sets a foundation for the research strategies and technologies needed to identify archaeological targets at greater depth on the Australian continental shelf and elsewhere, building on the results presented. Emphasis is also placed on the need for legislation to better protect and manage underwater cultural heritage on the 2 million square kilometres of drowned landscapes that were once available for occupation in Australia, and where a major part of its human history must lie waiting to be discovered.


Asunto(s)
Arqueología/métodos , Nativos de Hawái y Otras Islas del Pacífico/historia , Paleontología/métodos , Australia , Fósiles , Sedimentos Geológicos , Historia Antigua , Humanos , Océanos y Mares , Elevación del Nivel del Mar , Tecnología/métodos , Australia Occidental
7.
Microlife ; 1(1): uqaa003, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34235437

RESUMEN

In December 2019, a working group of the European Academy of Microbiology assembled to discuss various aspects of vaccines and vaccinations. The meeting was organised by Jörg Hacker and Eliora Z. Ron and took place in the offices of the Leopoldina (German National Academy of Sciences Leopoldina). Several important issues were addressed and a major part of the discussion focused on the need to develop new vaccines, especially to protect against pathogens that constitute a pandemic threat. Following the rapid and unpredicted spread of COVID-19 in the first seven months of 2020, the need to develop vaccines for pandemic viruses rapidly has been clearly established. Thus, this paper will concentrate on points that were highlighted by the recent COVID-19 pandemic and lessons learnt therefrom.

8.
Ann Glob Health ; 85(1): 142, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31871905

RESUMEN

Air pollution is a pressing issue that needs to be addressed at all levels, more urgently than ever. Air pollution has been a recognized and serious health problem far longer than the beginning of industrialization. There are accounts from the Roman philosopher Seneca, who in a letter described some 2000 years ago how much better he felt after leaving "a ruinous mess of steam and soot".


Asunto(s)
Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , Cooperación Internacional , Alemania , Salud Global , Política de Salud , Humanos , Formulación de Políticas , Naciones Unidas
9.
Science ; 358(6361): 279, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051351
10.
PeerJ ; 5: e3013, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344899

RESUMEN

The abundant dinosaurian tracksites of the Lower Cretaceous (Valanginian-Barremian) Broome Sandstone of the Dampier Peninsula, Western Australia, form an important part of the West Kimberley National Heritage Place. Previous attempts to document these tracksites using traditional mapping techniques (e.g., surface overlays, transects and gridlines combined with conventional photography) have been hindered by the non-trivial challenges associated with working in this area, including, but not limited to: (1) the remoteness of many of the tracksites; (2) the occurrence of the majority of the tracksites in the intertidal zone; (3) the size and complexity of many of the tracksites, with some extending over several square kilometres. Using the historically significant and well-known dinosaurian tracksites at Minyirr (Gantheaume Point), we show how these issues can be overcome through the use of an integrated array of remote sensing tools. A combination of high-resolution aerial photography with both manned and unmanned aircraft, airborne and handheld high-resolution lidar imaging and handheld photography enabled the collection of large amounts of digital data from which 3D models of the tracksites at varying resolutions were constructed. The acquired data encompasses a very broad scale, from the sub-millimetre level that details individual tracks, to the multiple-kilometre level, which encompasses discontinuous tracksite exposures and large swathes of coastline. The former are useful for detailed ichnological work, while the latter are being employed to better understand the stratigraphic and temporal relationship between tracksites in a broader geological and palaeoecological context. These approaches and the data they can generate now provide a means through which digital conservation and temporal monitoring of the Dampier Peninsula's dinosaurian tracksites can occur. As plans for the on-going management of the tracks in this area progress, analysis of the 3D data and 3D visualization will also likely provide an important means through which the broader public can experience these spectacular National Heritage listed landscapes.

11.
Int J Med Microbiol ; 305(3): 322-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25648374

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Células Madre Mesenquimatosas/microbiología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/fisiología , Humanos
12.
mBio ; 6(1)2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25587010

RESUMEN

UNLABELLED: Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78-O78:H19 ST88 isolate 789 (O78-9)-and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. IMPORTANCE: Avian colisepticemia is a severe systemic disease of birds causing high morbidity and mortality and resulting in severe economic losses. The bacteria associated with avian colisepticemia are highly antibiotic resistant, making antibiotic treatment ineffective, and there is no effective vaccine due to the multitude of serotypes involved. To understand the disease and work out strategies to combat it, we performed an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78, the major cause of the disease. We identified several potential virulence factors, conserved in all the colisepticemic strains examined, and determined their contribution to growth in serum, an absolute requirement for septicemia. These findings raise the possibility that specific vaccines or drugs can be developed against these critical virulence factors to help combat this economically important disease.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Genoma Bacteriano , Enfermedades de las Aves de Corral/microbiología , Sepsis/veterinaria , Animales , Pollos , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genómica , Datos de Secuencia Molecular , Filogenia , Sepsis/microbiología , Pavos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Glob Chang Biol ; 21(1): 62-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25044767

RESUMEN

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.


Asunto(s)
Incendios , Pradera , Australia , Carbono/química , Clima , Cambio Climático , Ecosistema , Agua
14.
Acta Hist Leopoldina ; (66): 9-17, 2014.
Artículo en Alemán | MEDLINE | ID: mdl-24988788

RESUMEN

In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.


Asunto(s)
Academias e Institutos/historia , Archivos/historia , Bibliotecas/historia , Disciplinas de las Ciencias Naturales/historia , Investigación/historia , Sociedades Científicas/historia , Alemania , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos
17.
Curr Top Microbiol Immunol ; 358: 3-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340801

RESUMEN

Escherichia coli is a paradigm for a versatile bacterial species which comprises harmless commensal as well as different pathogenic variants with the ability to either cause intestinal or extraintestinal diseases in humans and many animal hosts. Because of this broad spectrum of lifestyles and phenotypes, E. coli is a well-suited model organism to study bacterial evolution and adaptation to different growth conditions and niches. The geno- and phenotypic diversity, however, also hampers risk assessment and strain typing. A marked genome plasticity is the key to the great variability seen in this species. Acquisition of genetic information by horizontal gene transfer, gene loss as well as other genomic modifications, like DNA rearrangements and point mutations, can constantly alter the genome content and thus the fitness and competitiveness of individual variants in certain niches. Specific gene subsets and traits have been correlated with an increased potential of E. coli strains to cause intestinal or extraintestinal disease. Intestinal pathogenic E. coli strains can be reliably discriminated from non-pathogenic, commensal, or from extraintestinal E. coli pathogens based on genome content and phenotypic traits. An unambiguous distinction of extraintestinal pathogenic E. coli and commensals is, nevertheless, not so easy, as strains with the ability to cause extraintestinal infection are facultative pathogens and belong to the normal flora of many healthy individuals. Here, we compare insights into phylogeny, geno-, and phenotypic traits of commensal and pathogenic E. coli. We demonstrate that the borderline between extraintestinal virulence and intestinal fitness can be blurred as improved adaptability and competitiveness may promote intestinal colonization as well as extraintestinal infection by E. coli.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/fisiología , Escherichia coli/patogenicidad , Intestinos/microbiología , Simbiosis , Animales , Escherichia coli/clasificación , Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Genómica , Humanos , Mucosa Intestinal/metabolismo , Filogenia
19.
Int J Med Microbiol ; 302(1): 4-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22000740

RESUMEN

In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential.


Asunto(s)
Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/microbiología , Plásmidos/genética , Enfermedades de los Porcinos/microbiología , Resistencia a la Tetraciclina/genética , Factores de Virulencia/genética , Animales , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli Enterotoxigénica/efectos de los fármacos , Escherichia coli Enterotoxigénica/patogenicidad , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Sitios Genéticos , Humanos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Plásmidos/aislamiento & purificación , Análisis de Secuencia de ADN , Porcinos , Tetraciclina/farmacología , Virulencia
20.
Infect Immun ; 80(2): 668-78, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22104113

RESUMEN

Asymptomatic bacteriuria (ABU) is a condition where bacteria stably colonize the urinary tract, in a manner closely resembling commensalism at other mucosal sites. The patients carry >10(5) CFU/ml for extended periods of time and rarely develop symptoms. Contrasting the properties of ABU strains to those of uropathogenic isolates causing symptomatic infection is therefore highly relevant to understand mechanisms of bacterial adaptation. The prototype ABU strain Escherichia coli 83972 has a smaller genome than uropathogenic E. coli (UPEC) strains with deletions or point mutations in several virulence genes, suggesting that ABU strains undergo a programmed reductive evolution within human hosts. This study addressed if these observations can be generalized. Strains causing ABU in outpatients or hospitalized patients after catheterization or other invasive procedures were compared to commensal E. coli isolates from the intestinal flora of healthy individuals. Notably, clonal complex 73 (CC73) was a prominent phylogenetic lineage dominated by ABU isolates. ABU isolates from outpatients and hospitalized patients had a similar overall virulence gene repertoire, which distinguished them from many commensals, but typical UPEC virulence genes were less frequently attenuated in hospital strains than in outpatient strains or commensals. The decreased virulence potential of outpatient ABU isolates relative to that of ABU strains from hospitalized patients supports the hypothesis that loss of expression or decay of virulence genes facilitates long-term carriage and adaptation to host environments.


Asunto(s)
Bacteriuria/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Vejiga Urinaria/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Niño , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Hospitalización , Humanos , Datos de Secuencia Molecular , Filogenia , Selección Genética , Factores de Tiempo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...