Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39129533

RESUMEN

The functional organization of the frontal lobe is a source of debate, focusing on broad functional subdivisions, large-scale networks, or local refined specificities. Multiple neurocognitive models have tried to explain how functional interactions between cingulate and lateral frontal regions contribute to decision making and cognitive control, but their neuroanatomical bases remain unclear. We provide a detailed description of the functional connectivity between cingulate and lateral frontal regions using resting-state functional MRI in rhesus macaques. The analysis focuses on the functional connectivity of the rostral part of the cingulate sulcus with the lateral frontal cortex. Data-driven and seed-based analysis revealed three clusters within the cingulate sulcus organized along the rostro-caudal axis: the anterior, mid, and posterior clusters display increased functional connectivity with, respectively, the anterior lateral prefrontal regions, face-eye lateral frontal motor cortical areas, and hand lateral frontal motor cortex. The location of these clusters can be predicted in individual subjects based on morphological landmarks. These results suggest that the anterior cluster corresponds to the anterior cingulate cortex, whereas the posterior clusters correspond to the face-eye and hand cingulate motor areas within the anterior midcingulate cortex. These data provide a comprehensive framework to identify cingulate subregions based on functional connectivity and local organization.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo , Macaca mulatta , Imagen por Resonancia Magnética , Vías Nerviosas , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Masculino , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Lóbulo Frontal/fisiología , Lóbulo Frontal/diagnóstico por imagen , Femenino
2.
J Cogn Neurosci ; : 1-19, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38940721

RESUMEN

In primates, the presence of a face in a visual scene captures attention and rapidly directs the observer's gaze to the face, even when the face is not relevant to the task at hand. Here, we explored a neural circuit that might potentially play a causal role in this powerful behavior. In our previous research, two monkeys received microinfusions of muscimol, a GABAA-receptor agonist, or saline (as a control condition) in separate sessions into individual or pairs of four inferotemporal face patches (middle and anterior lateral and fundal), as identified by a preceding face localizer experiment. Then, using fMRI, we measured the impact of each inactivation condition on responses in the other face patches relative to the control condition. In this study, we used the same method and measured the impact of each inactivation condition on responses in the FEF and the lateral intraparietal area, two regions associated with attentional processing, while face and nonface object stimuli were viewed. Our results revealed potential relationships between inferotemporal face patches and these two attention-related regions: The inactivation of the middle lateral and anterior fundal face patches had a pronounced impact on FEF, whereas the inactivation of the middle and anterior lateral face patches might have a noticeable influence on lateral intraparietal area. Together, these initial exploratory findings document a circuit that potentially underlies the attentional capture of faces. Confirmation of the role of this circuit remains to be accomplished in the context of paradigm explicitly testing the attentional capture of faces.

3.
Commun Biol ; 7(1): 269, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443489

RESUMEN

Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.


Asunto(s)
Macaca , Corteza Prefrontal , Humanos , Animales , Corteza Prefrontal/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Lóbulo Frontal , Corteza Cerebral
4.
Hum Brain Mapp ; 44(18): 6439-6458, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877138

RESUMEN

Attention selects behaviorally relevant inputs for in-depth processing. Beside the role of traditional signals related to goal-directed and stimulus-driven control, a debate exists regarding the mechanisms governing the effect of statistical regularities on attentional selection, and how these are integrated with other control signals. Using a visuo-spatial search task under fMRI, we tested the joint effects of statistical regularities and stimulus-driven salience. We found that both types of signals modulated occipital activity in a spatially specific manner. Salience acted primarily by reducing the attention bias towards the target location when associated with irrelevant distractors, while statistical regularities reduced this attention bias when the target was presented at a low probability location, particularly at the lower levels of the visual hierarchy. In addition, we found that both statistical regularities and salience activated the dorsal frontoparietal network. Additional exploratory analyses of functional connectivity revealed that only statistical regularities modulated the inter-regional coupling between the posterior parietal cortex and the occipital cortex. These results show that statistical regularities and salience signals are both spatially represented at the occipital level, but that their integration into attentional processing priorities relies on dissociable brain mechanisms.


Asunto(s)
Encéfalo , Lóbulo Occipital , Humanos , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Parietal , Imagen por Resonancia Magnética
5.
Neuropharmacology ; 241: 109736, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774942

RESUMEN

Our ability to engage and perform daily activities relies on balancing the associated benefits and costs. Rewards, as benefits, act as powerful motivators that help us stay focused for longer durations. The noradrenergic (NA) system is thought to play a significant role in optimizing our performance. Yet, the interplay between reward and the NA system in shaping performance remains unclear, particularly when actions are driven by external incentives (reward). To explore this interaction, we tested four female rhesus monkeys performing a sustained Go/NoGo task under two reward sizes (low/high) and three pharmacological conditions (saline and two doses of atomoxetine, a NA reuptake inhibitor: ATX-0.5 mg/kg and ATX-1 mg/kg). We found that increasing either reward or NA levels equally enhanced the animal's engagement in the task compared to low reward saline; the animals also responded faster and more consistently under these circumstances. Notably, we identified differences between reward size and ATX. When combined with ATX, high reward further reduced the occurrence of false alarms (i.e., incorrect go trials on distractors), implying that it helped further suppress impulsive responses. In addition, ATX (but not reward size) consistently increased movement duration dose-dependently, while high reward did not affect movement duration but decreased its variability. We conclude that noradrenaline and reward modulate performance, but their effects are not identical, suggesting differential underlying mechanisms. Reward might energize/invigorate decisions and action, while ATX might help regulate energy expenditure, depending on the context, through the NA system.


Asunto(s)
Conducta Impulsiva , Motivación , Animales , Femenino , Clorhidrato de Atomoxetina/farmacología , Tiempo de Reacción , Recompensa
6.
Commun Biol ; 6(1): 693, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407769

RESUMEN

Identifying the evolutionary origins of human speech remains a topic of intense scientific interest. Here we describe a unique feature of adult human neuroanatomy compared to chimpanzees and other primates that may provide an explanation of changes that occurred to enable the capacity for speech. That feature is the Prefrontal extent of the Frontal Operculum (PFOp) region, which is located in the ventrolateral prefrontal cortex, adjacent and ventromedial to the classical Broca's area. We also show that, in chimpanzees, individuals with the most human-like PFOp, particularly in the left hemisphere, have greater oro-facial and vocal motor control abilities. This critical discovery, when combined with recent paleontological evidence, suggests that the PFOp is a recently evolved feature of human cortical structure (perhaps limited to the genus Homo) that emerged in response to increasing selection for cognitive and motor functions evident in modern speech abilities.


Asunto(s)
Habla , Voz , Adulto , Animales , Humanos , Habla/fisiología , Pan troglodytes/fisiología , Lóbulo Frontal/fisiología , Primates
7.
Sci Adv ; 9(20): eadf9445, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37205762

RESUMEN

Detailed neuroscientific data from macaque monkeys have been essential in advancing understanding of human frontal cortex function, particularly for regions of frontal cortex without homologs in other model species. However, precise transfer of this knowledge for direct use in human applications requires an understanding of monkey to hominid homologies, particularly whether and how sulci and cytoarchitectonic regions in the frontal cortex of macaques relate to those in hominids. We combine sulcal pattern analysis with resting-state functional magnetic resonance imaging and cytoarchitectonic analysis to show that old-world monkey brains have the same principles of organization as hominid brains, with the notable exception of sulci in the frontopolar cortex. This essential comparative framework provides insights into primate brain evolution and a key tool to drive translation from invasive research in monkeys to human applications.


Asunto(s)
Hominidae , Imagen por Resonancia Magnética , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Frontal/diagnóstico por imagen , Primates , Mapeo Encefálico/métodos , Macaca , Cercopithecidae
8.
Nat Commun ; 13(1): 6787, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351907

RESUMEN

Although the presence of face patches in primate inferotemporal (IT) cortex is well established, the functional and causal relationships among these patches remain elusive. In two monkeys, muscimol was infused sequentially into each patch or pair of patches to assess their respective influence on the remaining IT face network and the amygdala, as determined using fMRI. The results revealed that anterior face patches required input from middle face patches for their responses to both faces and objects, while the face selectivity in middle face patches arose, in part, from top-down input from anterior face patches. Moreover, we uncovered a parallel fundal-lateral functional organization in the IT face network, supporting dual routes (dorsal-ventral) in face processing within IT cortex as well as between IT cortex and the amygdala. Our findings of the causal relationship among the face patches demonstrate that the IT face circuit is organized into multiple functional compartments.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Animales , Estimulación Luminosa/métodos , Macaca mulatta , Corteza Cerebral/fisiología , Reconocimiento Visual de Modelos/fisiología
10.
Cereb Cortex Commun ; 3(3): tgac031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072709

RESUMEN

We constantly face situations involving interactions with others that require us to automatically adjust our physical distances to avoid discomfort or anxiety. A previous case study has demonstrated that the integrity of both amygdalae is essential to regulate interpersonal distances. Despite unilateral lesion to the amygdala, as to other sectors of the medial temporal cortex, are known to also affect social behavior, their role in the regulation of interpersonal distances has never been investigated. Here, we sought to fill this gap by testing three patients with unilateral temporal lesions following surgical resections, including one patient with a lesion mainly centered on the amygdala and two with lesions to adjacent medial temporal cortex, on two versions of the stop distance paradigm (i.e. in a virtual reality environment and in a real setting). Our results showed that all three patients set shorter interpersonal distances compared to neurotypical controls. In addition, compared to controls, none of the patients adjusted such physical distances depending on facial emotional expressions, despite they preserved ability to categorize them. Finally, patients' heart rate responses differed from controls when viewing approaching faces. Our findings bring compelling evidence that unilateral lesions within the medial temporal cortex, not necessarily restricted to the amygdala, are sufficient to alter interpersonal distance, thus shedding new light on the neural circuitry regulating distance in social interactions.

11.
Neuroimage ; 255: 119206, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427770

RESUMEN

Visuo-spatial attention prioritizes the processing of relevant inputs via different types of signals, including current goals and stimulus salience. Complex mixtures of these signals engage in everyday life situations, but little is known about how these signals jointly modulate distributed patterns of activity across the occipital regions that represent visual space. Here, we measured spatio-topic, quadrant-specific occipital activity during the processing of visual displays containing both task-relevant targets and salient color-singletons. We computed spatial bias vectors indexing the effect of attention in 2D space, as coded by distributed activity in the occipital cortex. We found that goal-directed spatial attention biased activity towards the target and that salience further modulated this endogenous effect: salient distractors decreased the spatial bias, while salient targets increased it. Analyses of effective connectivity revealed that the processing of salient distractors relied on the modulation of the bidirectional connectivity between the occipital and the posterior parietal cortex, as well as the modulation of the lateral interactions within the occipital cortex. These findings demonstrate that goal-directed attention and salience jointly contribute to shaping processing priorities in the occipital cortex and highlight that multiple functional paths determine how spatial information about these signals is distributed across occipital regions.


Asunto(s)
Atención , Imagen por Resonancia Magnética , Mapeo Encefálico , Humanos , Lóbulo Occipital , Lóbulo Parietal , Estimulación Luminosa , Percepción Espacial , Percepción Visual
13.
PLoS Biol ; 20(2): e3001545, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192604

RESUMEN

To maintain homeostasis, our brain tracks the effort exerted during decision-making. A new study in PLOS Biology shows that the activity of noradrenergic neurons in the locus coeruleus (LC) reflects the effort exerted to face cognitive or physical challenges.


Asunto(s)
Neuronas Adrenérgicas , Norepinefrina , Encéfalo , Locus Coeruleus/fisiología
14.
Cereb Cortex ; 32(18): 4050-4067, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34974618

RESUMEN

A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional magnetic resonance imaging (rs-fMRI) in anaesthetized nonhuman primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity organization of a well-characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques show that rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas, while more caudal seeds displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrated a similar functional connectivity (FC) organization of the cingulo-frontal cortical network in awake macaque to that previously uncovered in the human brain pointing toward a preserved FC organization from macaque to human. However, it can only be observed in awake state suggesting that this network is sensitive to anaesthesia and warranting significant caution when comparing FC patterns across species under different states.


Asunto(s)
Anestesia , Mapeo Encefálico , Animales , Lóbulo Frontal/diagnóstico por imagen , Humanos , Macaca , Imagen por Resonancia Magnética/métodos
15.
Sci Rep ; 12(1): 109, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996925

RESUMEN

Physical proximity is important in social interactions. Here, we assessed whether simulated physical proximity modulates the perceived intensity of facial emotional expressions and their associated physiological signatures during observation or imitation of these expressions. Forty-four healthy volunteers rated intensities of dynamic angry or happy facial expressions, presented at two simulated locations, proximal (0.5 m) and distant (3 m) from the participants. We tested whether simulated physical proximity affected the spontaneous (in the observation task) and voluntary (in the imitation task) physiological responses (activity of the corrugator supercilii face muscle and pupil diameter) as well as subsequent ratings of emotional intensity. Angry expressions provoked relative activation of the corrugator supercilii muscle and pupil dilation, whereas happy expressions induced a decrease in corrugator supercilii muscle activity. In proximal condition, these responses were enhanced during both observation and imitation of the facial expressions, and were accompanied by an increase in subsequent affective ratings. In addition, individual variations in condition related EMG activation during imitation of angry expressions predicted increase in subsequent emotional ratings. In sum, our results reveal novel insights about the impact of physical proximity in the perception of emotional expressions, with early proximity-induced enhancements of physiological responses followed by an increased intensity rating of facial emotional expressions.


Asunto(s)
Emociones , Expresión Facial , Reconocimiento Facial , Interacción Social , Percepción Visual , Adulto , Electromiografía , Músculos Faciales/fisiología , Femenino , Humanos , Conducta Imitativa , Masculino , Estimulación Luminosa , Pupila/fisiología , Adulto Joven
16.
Cortex ; 142: 28-46, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174722

RESUMEN

The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.


Asunto(s)
Espacio Personal , Percepción Espacial , Encéfalo , Emociones , Humanos , Estimulación Física
17.
Brain Struct Funct ; 226(9): 2911-2930, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34043075

RESUMEN

In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330-343, 2017, but see Fan et al. J Neurosci. 35:16303-16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411-424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139-141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.


Asunto(s)
Percepción de Movimiento , Flujo Optico , Corteza Visual , Animales , Macaca , Imagen por Resonancia Magnética , Estimulación Luminosa
18.
Cortex ; 138: 40-58, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677327

RESUMEN

Accumulating evidence indicates that the peripersonal space (PPS) constitutes a privileged area for efficient processing of proximal stimuli, allowing to flexibly adapt our behavior both to the physical and social environment. Whether and how behavioral and physiological signatures of PPS relate to each other in emotional contexts remains, though, elusive. Here, we addressed this question by having participants to discriminate male from female faces depicting different emotions (happiness, anger or neutral) and presented at different distances (50 cm-300 cm) while we measured the reaction time and accuracy of their responses, as well as pupillary diameter, heart rate and heart rate variability. Results showed facilitation of participants' performances (i.e., faster response time) when faces were presented close compared to far from the participants, even when controlling for retinal size across distances. These behavioral effects were accompanied by significant modulation of participants' physiological indexes when faces were presented in PPS. Interestingly, both PPS representation and physiological signals were affected by features of the seen faces such as the emotional valence, its sex and the participants' sex, revealing the profound impact of social context onto the autonomic state and behavior within PPS. Together, these findings suggest that both external and internal signals contribute in shaping PPS representation.


Asunto(s)
Emociones , Espacio Personal , Ira , Expresión Facial , Femenino , Felicidad , Humanos , Masculino , Tiempo de Reacción
19.
Commun Biol ; 4(1): 54, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420330

RESUMEN

The paracingulate sulcus -PCGS- has been considered for a long time to be specific to the human brain. Its presence/absence has been discussed in relation to interindividual variability of personality traits and cognitive abilities. Recently, a putative PCGS has been observed in chimpanzee brains. To demonstrate that this newly discovered sulcus is the homologue of the PCGS in the human brain, we analyzed cytoarchitectonic and resting-state functional magnetic resonance imaging data in chimpanzee brains which did or did not display a PCGS. The results show that the organization of the mid-cingulate cortex of the chimpanzee brain is comparable to that of the human brain, both cytoarchitectonically and in terms of functional connectivity with the lateral frontal cortex. These results demonstrate that the PCGS is not human-specific but is a shared feature of the primate brain since at least the last common ancestor to humans and great apes ~6 mya.


Asunto(s)
Lóbulo Frontal/anatomía & histología , Pan troglodytes/anatomía & histología , Animales , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Humanos , Imagen por Resonancia Magnética , Pan troglodytes/fisiología
20.
Neuropharmacology ; 182: 108377, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137343

RESUMEN

Visuo-spatial attentional orienting is fundamental to selectively process behaviorally relevant information, depending on both low-level visual attributes of stimuli in the environment and higher-level factors, such as goals, expectations and prior knowledge. Growing evidence suggests an impact of the locus-cœruleus-norepinephrine (LC-NE) system in attentional orienting that depends on taskcontext. Nonetheless, most of previous studies used visual displays encompassing a target and various distractors, often preceded by cues to orient the attentional focus. This emphasizes the contribution of goal-driven processes, at the expense of other factors related to the stimulus content. Here, we aimed to determine the impact of NE on attentional orienting in more naturalistic conditions, using complex images and without any explicit task manipulation. We tested the effects of atomoxetine (ATX) injections, a NE reuptake inhibitor, on four monkeys during free viewing of images belonging to three categories: landscapes, monkey faces and scrambled images. Analyses of the gaze exploration patterns revealed, first, that the monkeys spent more time on each fixation under ATX compared to the control condition, regard less of the image content. Second, we found that, depending on the image content, ATX modulated the impact of low-level visual salience on attentional orienting. This effect correlated with the effect of ATX on the number and duration of fixations. Taken together, our results demonstrate that ATX adjusts the contribution of salience on attentional orienting depending on the image content, indicative of its role in balancing the role of stimulus-driven and top-down control during free viewing of complex stimuli.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Clorhidrato de Atomoxetina/farmacología , Atención/efectos de los fármacos , Movimientos Oculares/efectos de los fármacos , Estimulación Luminosa/métodos , Tiempo de Reacción/efectos de los fármacos , Animales , Atención/fisiología , Movimientos Oculares/fisiología , Femenino , Macaca mulatta , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...