Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1053920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261365

RESUMEN

Background: Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation. Methods: CAFs were isolated from colon cancer liver metastases and were immortalized to prolong lifespan and improve robustness and reproducibility. Established medium and matrix compositions that support the growth of patient-derived organoids were adapted to also support CAF growth. Changes in growth pattern and cellular re-organization were assessed by confocal microscopy, live cell imaging, and immunofluorescence. Single cell RNA sequencing was used to study CAF/organoid co-culture-induced phenotypic changes in both cell types. Conditioned media were used to quantify the production of immunosuppressive factors and to assess their effect on T cell proliferation. Results: We developed a co-culture system in which colon cancer organoids and CAFs spontaneously organize into superstructures with a high capacity to contract and stiffen the extracellular matrix (ECM). CAF-produced collagen IV provided a basement membrane supporting cancer cell organization into glandular structures, reminiscent of human cancer histology. Single cell RNA sequencing analysis showed that CAFs induced a partial epithelial-to-mesenchymal-transition in a subpopulation of cancer cells, similar to what is observed in the mesenchymal-like consensus molecular subtype 4 (CMS4) colon cancer. CAFs in co-culture were characterized by high expression of ECM components, ECM-remodeling enzymes, glycolysis, hypoxia, and genes involved in immunosuppression. An expression signature derived from CAFs in co-culture identified a subpopulation of glycolytic myofibroblasts specifically residing in CMS1 and CMS4 colon cancer. Medium conditioned by co-cultures contained high levels of the immunosuppressive factors TGFß1, VEGFA and lactate, and potently inhibited T cell proliferation. Conclusion: Co-cultures of organoids and immortalized CAFs recapitulate the histological, biophysical, and immunosuppressive features of aggressive mesenchymal-like human CRC. The model can be used to study the mechanisms of immunosuppression and to test therapeutic strategies targeting the cross-talk between CAFs and cancer cells. It can be further modified to represent distinct colon cancer subtypes and (organ-specific) microenvironments.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Técnicas de Cocultivo , Reproducibilidad de los Resultados , Neoplasias del Colon/patología , Microambiente Tumoral
2.
Cancer Res ; 82(10): 1953-1968, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35570706

RESUMEN

Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization). A better understanding of this step in the metastatic cascade could help improve metastasis prevention and treatment. Here we analyzed liver specimens of patients with colorectal cancer and monitored real-time metastasis formation in mouse livers using intravital microscopy to reveal that micrometastatic lesions are devoid of cancer stem cells (CSC). However, lesions that grow into overt metastases demonstrated appearance of de novo CSCs through cellular plasticity at a multicellular stage. Clonal outgrowth of patient-derived colorectal cancer organoids phenocopied the cellular and transcriptomic changes observed during in vivo metastasis formation. First, formation of mature CSCs occurred at a multicellular stage and promoted growth. Conversely, failure of immature CSCs to generate more differentiated cells arrested growth, implying that cellular heterogeneity is required for continuous growth. Second, early-stage YAP activity was required for the survival of organoid-forming cells. However, subsequent attenuation of early-stage YAP activity was essential to allow for the formation of cell type heterogeneity, while persistent YAP signaling locked micro-organoids in a cellularly homogenous and growth-stalled state. Analysis of metastasis formation in mouse livers using single-cell RNA sequencing confirmed the transient presence of early-stage YAP activity, followed by emergence of CSC and non-CSC phenotypes, irrespective of the initial phenotype of the metastatic cell of origin. Thus, establishment of cellular heterogeneity after an initial YAP-controlled outgrowth phase marks the transition to continuously growing macrometastases. SIGNIFICANCE: Characterization of the cell type dynamics, composition, and transcriptome of early colorectal cancer liver metastases reveals that failure to establish cellular heterogeneity through YAP-controlled epithelial self-organization prohibits the outgrowth of micrometastases. See related commentary by LeBleu, p. 1870.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Neoplasias Colorrectales/patología , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Micrometástasis de Neoplasia/patología , Células Madre Neoplásicas/patología
3.
PLoS Biol ; 20(1): e3001527, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089911

RESUMEN

CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.


Asunto(s)
ADN/genética , Desoxirribonucleasa I/metabolismo , Sitios Genéticos , Organoides/metabolismo , Reparación del ADN por Recombinación , Coloración y Etiquetado/métodos , Alelos , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Colon/citología , Colon/metabolismo , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Desoxirribonucleasa I/genética , Electroporación/métodos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Técnicas de Sustitución del Gen , Vectores Genéticos , Genoma Humano , Heterocigoto , Humanos , Organoides/citología
4.
Nat Commun ; 12(1): 3188, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045449

RESUMEN

Survival rates of cancer patients vary widely within and between malignancies. While genetic aberrations are at the root of all cancers, individual genomic features cannot explain these distinct disease outcomes. In contrast, intra-tumour heterogeneity (ITH) has the potential to elucidate pan-cancer survival rates and the biology that drives cancer prognosis. Unfortunately, a comprehensive and effective framework to measure ITH across cancers is missing. Here, we introduce a scalable measure of chromosomal copy number heterogeneity (CNH) that predicts patient survival across cancers. We show that the level of ITH can be derived from a single-sample copy number profile. Using gene-expression data and live cell imaging we demonstrate that ongoing chromosomal instability underlies the observed heterogeneity. Analysing 11,534 primary cancer samples from 37 different malignancies, we find that copy number heterogeneity can be accurately deduced and predicts cancer survival across tissues of origin and stages of disease. Our results provide a unifying molecular explanation for the different survival rates observed between cancer types.


Asunto(s)
Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Modelos Genéticos , Neoplasias/mortalidad , Microambiente Tumoral/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Simulación por Computador , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/genética , Neoplasias/patología , Pronóstico , Supervivencia sin Progresión , Medición de Riesgo/métodos , Tasa de Supervivencia , Adulto Joven
5.
Dev Cell ; 54(4): 435-446, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32841594

RESUMEN

Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.


Asunto(s)
Desdiferenciación Celular/genética , Intestinos/crecimiento & desarrollo , Regeneración/genética , Células Madre/citología , Aciltransferasas , Proteínas de Ciclo Celular/genética , Linaje de la Célula/genética , Microambiente Celular/genética , Humanos , Intestinos/citología , Receptores Notch/genética , Factores de Transcripción/genética , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA