Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197697

RESUMEN

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Asunto(s)
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Oncología Médica , Muerte Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
2.
Magn Reson Med ; 87(3): 1435-1445, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34752638

RESUMEN

PURPOSE: The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues. METHODS: Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies. RESULTS: Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue. CONCLUSION: Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Animales , Encéfalo/diagnóstico por imagen , Valores de Referencia , Viscosidad , Pez Cebra
4.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668722

RESUMEN

Only half of patients with relapsed B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) currently survive with standard treatment protocols. Predicting individual patient responses to defined drugs prior to application would help therapy stratification and could improve survival. With the purpose to aid personalized targeted treatment approaches, we developed a human-zebrafish xenograft (ALL-ZeFiX) assay to predict drug response in a patient in 5 days. Leukemia blast cells were pericardially engrafted into transiently immunosuppressed Danio rerio embryos, and engrafted embryos treated for the test case, venetoclax, before single-cell dissolution for quantitative whole blast cell analysis. Bone marrow blasts from patients with newly diagnosed or relapsed BCP-ALL were successfully expanded in 60% of transplants in immunosuppressed zebrafish embryos. The response of BCP-ALL cell lines to venetoclax in ALL-ZeFiX assays mirrored responses in 2D cultures. Venetoclax produced varied responses in patient-derived BCP-ALL grafts, including two results mirroring treatment responses in two refractory BCP-ALL patients treated with venetoclax. Here we demonstrate proof-of-concept for our 5-day ALL-ZeFiX assay with primary patient blasts and the test case, venetoclax, which after expanded testing for further targeted drugs could support personalized treatment decisions within the clinical time window for decision-making.

5.
J Biol Chem ; 291(26): 13730-42, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129770

RESUMEN

Convergent extension movements during vertebrate gastrulation require a balanced activity of non-canonical Wnt signaling pathways, but the factors regulating this interplay on the molecular level are poorly characterized. Here we show that sFRP2, a member of the secreted frizzled-related protein (sFRP) family, is required for morphogenesis and papc expression during Xenopus gastrulation. We further provide evidence that sFRP2 redirects non-canonical Wnt signaling from Frizzled 7 (Fz7) to the receptor tyrosine kinase-like orphan receptor 2 (Ror2). During this process, sFRP2 promotes Ror2 signal transduction by stabilizing Wnt5a-Ror2 complexes at the membrane, whereas it inhibits Fz7 signaling, probably by blocking Fz7 receptor endocytosis. The cysteine-rich domain of sFRP2 is sufficient for Ror2 activation, and related sFRPs can substitute for this function. Notably, direct interaction of the two receptors via their cysteine-rich domains also promotes Ror2-mediated papc expression but inhibits Fz7 signaling. We propose that sFRPs can act as a molecular switch, channeling the signal input for different non-canonical Wnt pathways during vertebrate gastrulation.


Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt-5a/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Gástrula , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/genética , Proteína Wnt-5a/genética , Proteínas de Xenopus/genética , Xenopus laevis , Proteínas de Pez Cebra/genética
6.
Nat Commun ; 6: 5846, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25556612

RESUMEN

Paracrine Wnt/ß-catenin signalling is important during developmental processes, tissue regeneration and stem cell regulation. Wnt proteins are morphogens, which form concentration gradients across responsive tissues. Little is known about the transport mechanism for these lipid-modified signalling proteins in vertebrates. Here we show that Wnt8a is transported on actin-based filopodia to contact responding cells and activate signalling during neural plate formation in zebrafish. Cdc42/N-Wasp regulates the formation of these Wnt-positive filopodia. Enhanced formation of filopodia increases the effective signalling range of Wnt by facilitating spreading. Consistently, reduction in filopodia leads to a restricted distribution of the ligand and a limited signalling range. Using a simulation, we provide evidence that such a short-range transport system for Wnt has a long-range signalling function. Indeed, we show that a filopodia-based transport system for Wnt8a controls anteroposterior patterning of the neural plate during vertebrate gastrulation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas del Citoesqueleto/metabolismo , Placa Neural/embriología , Seudópodos/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Simulación por Computador , Fibroblastos/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Ratones , Microscopía Confocal , Oligonucleótidos Antisentido/genética , Plásmidos/genética , Transporte de Proteínas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de Unión al GTP cdc42/metabolismo
7.
J Cell Sci ; 127(Pt 18): 3970-82, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25074807

RESUMEN

After activation by Wnt/ß-Catenin ligands, a multi-protein complex assembles at the plasma membrane as membrane-bound receptors and intracellular signal transducers are clustered into the so-called Lrp6-signalosome [Corrected]. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt-Fz-Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The µ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2µ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2µ2-mediated endocytosis is important to maintain Wnt/ß-catenin signaling in vertebrates.


Asunto(s)
Endocitosis , Complejos Multiproteicos/metabolismo , Vía de Señalización Wnt , Xenopus/metabolismo , beta Catenina/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Femenino , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Complejos Multiproteicos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Xenopus/embriología , Xenopus/genética
8.
Front Neurosci ; 6: 76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654733

RESUMEN

The thalamic complex is an essential part of the brain that requires a combination of specialized activities to attain its final complexity. In the following review we will describe the induction process of the mid-diencephalic organizer (MDO) where three different signaling pathways merge: Wnt, Shh, and Fgf. Here, we dissect the function of each signaling pathway in the thalamus in chronological order of their appearance. First we describe the Wnt mediated induction of the MDO and compartition of the caudal forebrain, then the Shh mediated determination of proneural gene expression before discussing recent progress in characterizing Fgf function during thalamus development. Then, we focus on transcription factors, which are regulated by these pathways and which play a pivotal role in neurogenesis in the thalamus. The three signaling pathways act together in a strictly regulated chronology to orchestrate the development of the entire thalamus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...