Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106137

RESUMEN

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción/metabolismo , TATA Box , Proteína de Unión a TATA-Box/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/química , Adenosina Trifosfato/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química
2.
Cell Rep ; 32(13): 108190, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32997987

RESUMEN

Kinetochores are macromolecular protein assemblies at centromeres that mediate accurate chromosome segregation during cell division. The outer kinetochore KNL1SPC105, MIS12MTW1, and NDC80NDC80 complexes assemble the KMN network, which harbors the sites of microtubule binding and spindle assembly checkpoint signaling. The buildup of the KMN network that transmits microtubule pulling forces to budding yeast point centromeres is poorly understood. Here, we identify 225 inter-protein crosslinks by mass spectrometry on KMN complexes isolated from Saccharomyces cerevisiae that delineate the KMN subunit connectivity for outer kinetochore assembly. C-Terminal motifs of Nsl1 and Mtw1 recruit the SPC105 complex through Kre28, and both motifs aid tethering of the NDC80 complex by the previously reported Dsn1 C terminus. We show that a hub of three C-terminal MTW1 subunit motifs mediates the cooperative stabilization of the KMN network, which is augmented by a direct NDC80-SPC105 association.


Asunto(s)
Cinetocoros/metabolismo , Espectrometría de Masas/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/patogenicidad , Secuencia de Aminoácidos
3.
EMBO J ; 39(14): e102938, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32515113

RESUMEN

Kinetochores are chromatin-bound multi-protein complexes that allow high-fidelity chromosome segregation during mitosis and meiosis. Kinetochore assembly is exclusively initiated at chromatin containing Cse4/CENP-A nucleosomes. The molecular mechanisms ensuring that subcomplexes assemble efficiently into kinetochores only at centromeres, but not anywhere else, are incompletely understood. Here, we combine biochemical and genetic experiments to demonstrate that auto-inhibition of the conserved kinetochore subunit Mif2/CENP-C contributes to preventing unscheduled kinetochore assembly in budding yeast cells. We show that wild-type Mif2 is attenuated in its ability to bind a key downstream component in the assembly pathway, the Mtw1 complex, and that addition of Cse4 nucleosomes overcomes this inhibition. By exchanging the N-terminus of Mif2 with its functional counterpart from Ame1/CENP-U, we have created a Mif2 mutant which bypasses the Cse4 requirement for Mtw1 binding in vitro, thereby shortcutting kinetochore assembly. Expression of this Mif2 mutant in cells leads to mis-localization of the Mtw1 complex and causes pronounced chromosome segregation defects. We propose that auto-inhibition of Mif2/CENP-C constitutes a key concept underlying the molecular logic of kinetochore assembly.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Elife ; 82019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112132

RESUMEN

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.


Asunto(s)
Cinetocoros/química , Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomycetales/química , Unión Proteica
5.
Elife ; 82019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30657449

RESUMEN

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.


Asunto(s)
Arabidopsis/metabolismo , Cromosomas/ultraestructura , Meiosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Haploidia , Cinética , Espectrometría de Masas , Ratones , Mutación , Proteínas Nucleares/metabolismo , Dominios Proteicos , Mapeo de Interacción de Proteínas , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Dispersión de Radiación , Complejo Sinaptonémico/metabolismo , Sincrotrones , Técnicas del Sistema de Dos Híbridos , Zygosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...