Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(4): e2300549, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983912

RESUMEN

This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.


Asunto(s)
Azidas , Hidrogeles , Humanos , Hidrogeles/química , Polímeros/química , Plasma , Alquinos , Benzofenonas
2.
ACS Appl Mater Interfaces ; 14(49): 55017-55027, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36446038

RESUMEN

We report on the tailoring of rolling circle amplification (RCA) for affinity biosensors relying on the optical probing of their surface with confined surface plasmon field. Affinity capture of the target analyte at the metallic sensor surface (e.g., by using immunoassays) is followed by the RCA step for subsequent readout based on increased refractive index (surface plasmon resonance, SPR) or RCA-incorporated high number of fluorophores (in surface plasmon-enhanced fluorescence, PEF). By combining SPR and PEF methods, this work investigates the impact of the conformation of long RCA-generated single-stranded DNA (ssDNA) chains to the plasmonic sensor response enhancement. In order to confine the RCA reaction within the evanescent surface plasmon field and hence maximize the sensor response, an interface carrying analyte-capturing molecules and additional guiding ssDNA strands (complementary to the repeating segments of RCA-generated chains) is developed. When using the circular padlock probe as a model target analyte, the PEF readout shows that the reported RCA implementation improves the limit of detection (LOD) from 13 pM to high femtomolar concentration when compared to direct labeling. The respective enhancement factor is of about 2 orders of magnitude, which agrees with the maximum number of fluorophore emitters attached to the RCA chain that is folded in the evanescent surface plasmon field by the developed biointerface. Moreover, the RCA allows facile visualizing of individual binding events by fluorescence microscopy, which enables direct counting of captured molecules. This approach offers a versatile route toward a fast digital readout format of single-molecule detection with further reduced LOD.


Asunto(s)
Técnicas Biosensibles , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Límite de Detección , ADN de Cadena Simple
3.
Chem Soc Rev ; 51(10): 3926-3963, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35471654

RESUMEN

Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.


Asunto(s)
Hidrogeles , Nanoestructuras , Nanoestructuras/química , Polímeros , Análisis Espectral
4.
ACS Appl Mater Interfaces ; 13(27): 32352-32362, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34212712

RESUMEN

The growth of surface-attached single-stranded deoxyribonucleic acid (ssDNA) chains is monitored in situ using an evanescent wave optical biosensor that combines surface plasmon resonance (SPR) and optical waveguide spectroscopy (OWS). The "grafting-from" growth of ssDNA chains is facilitated by rolling circle amplification (RCA), and the gradual prolongation of ssDNA chains anchored to a gold sensor surface is optically tracked in time. At a sufficient density of the polymer chains, the ssDNA takes on a brush architecture with a thickness exceeding 10 µm, supporting a spectrum of guided optical waves traveling along the metallic sensor surface. The simultaneous probing of this interface with the confined optical field of surface plasmons and additional more delocalized dielectric optical waveguide modes enables accurate in situ measurement of the ssDNA brush thickness, polymer volume content, and density gradients. We report for the first time on the utilization of the SPR/OWS technique for the measurement of the RCA speed on a solid surface that can be compared to that in bulk solutions. In addition, the control of ssDNA brush properties by changing the grafting density and ionic strength and post-modification via affinity reaction with complementary short ssDNA staples is discussed. These observations may provide important leads for tailoring RCA toward sensitive and rapid assays in affinity-based biosensors.


Asunto(s)
ADN de Cadena Simple/genética , Técnicas de Amplificación de Ácido Nucleico , Fenómenos Ópticos , Análisis Espectral , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles , Factores de Tiempo
5.
ACS Appl Mater Interfaces ; 13(23): 27645-27655, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34081862

RESUMEN

A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.


Asunto(s)
Resinas Acrílicas/química , Técnicas Biosensibles/métodos , Infecciones por Virus de Epstein-Barr/diagnóstico , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Hidrogeles/química , Inmunoglobulina G/análisis , Fragmentos de Péptidos/metabolismo , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Fluorescencia , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Hidrogeles/metabolismo , Inmunoglobulina G/inmunología , Fragmentos de Péptidos/inmunología , Polímeros/química
6.
Opt Express ; 28(26): 39770-39780, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379519

RESUMEN

A multi-diffractive nanostructure is reported for the resonant excitation of surface plasmons that are cross-coupled through a thin metallic film. It consists of two superimposed periodic corrugations that allow diffraction excitation of surface plasmons on the inner side of a thin metal film and their subsequent phase matching with counterpropagating surface plasmons travelling to the opposite direction on its other side. This interaction leads to establishing of a set of cross-coupled Bragg-scattered surface plasmon modes that exhibit an electromagnetic field localized on both metal film interfaces. The reported structure is attractive for surface plasmon resonance biosensor applications, where direct optical probing can be done through the substrate without the need of optical matching to a high refractive index prism. In addition, it can be prepared by mass production - compatible means with UV-nanoimprint lithography and its biosensing performance characteristics are demonstrated by refractometric and biomolecular affinity binding studies.


Asunto(s)
Técnicas Biosensibles/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Algoritmos , Diseño de Equipo , Análisis de Falla de Equipo , Modelos Teóricos , Refractometría/instrumentación
7.
Methods Enzymol ; 642: 469-493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32828265

RESUMEN

Plasmonic nanostructures serve in a range of analytical techniques that were developed for the analysis of chemical and biological species. Among others, they have been pursued for the investigation of odorant binding proteins (OBP) and their interaction with odorant molecules. These compounds are low molecular weight agents, which makes their direct detection with conventional surface plasmon resonance (SPR) challenging. Therefore, other plasmonic sensor modalities need to be implemented for the detection and interaction analysis of OBPs. This chapter provides a guide for carrying out such experiments based on two techniques that take advantage of conformation changes of OBPs occurring upon specific interaction with their affinity partners. First, there is discussed SPR monitoring of conformation changes of biomolecules that are not accompanied by a strong increase in the surface mass density but rather with its re-distribution perpendicular to the surface. Second, the implementation of surface plasmon-enhanced fluorescence energy transfer is presented for the sensitive monitoring of conformational changes of biomolecules tagged with a fluorophore at its defined part. Examples from our and other laboratories illustrate the performance of these concepts and their applicability for the detection of low molecular weight odorant molecules by the use of OBPs attached to the sensor surface is discussed.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Proteínas Portadoras , Odorantes , Resonancia por Plasmón de Superficie
8.
J Phys Chem C Nanomater Interfaces ; 124(5): 3297-3305, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32089762

RESUMEN

A novel approach to local functionalization of plasmonic hotspots at gold nanoparticles with biofunctional moieties is reported. It relies on photocrosslinking and attachment of a responsive hydrogel binding matrix by the use of a UV interference field. A thermoresponsive poly(N-isopropylacrylamide)-based (pNIPAAm) hydrogel with photocrosslinkable benzophenone groups and carboxylic groups for its postmodification was employed. UV-laser interference lithography with a phase mask configuration allowed for the generation of a high-contrast interference field that was used for the recording of periodic arrays of pNIPAAm-based hydrogel features with the size as small as 170 nm. These hydrogel arrays were overlaid and attached on the top of periodic arrays of gold nanoparticles, exhibiting a diameter of 130 nm and employed as a three-dimensional binding matrix in a plasmonic biosensor. Such a hybrid material was postmodified with ligand biomolecules and utilized for plasmon-enhanced fluorescence readout of an immunoassay. Additional enhancement of the fluorescence sensor signal by the collapse of the responsive hydrogel binding matrix that compacts the target analyte at the plasmonic hotspot is demonstrated.

9.
Anal Chem ; 89(5): 2972-2977, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28192973

RESUMEN

A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients.


Asunto(s)
Técnicas Biosensibles/métodos , Anticuerpos contra la Hepatitis B/análisis , Antígenos de Superficie de la Hepatitis B/química , Saliva/metabolismo , Biomarcadores/análisis , Oro/química , Anticuerpos contra la Hepatitis B/sangre , Anticuerpos contra la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/inmunología , Inmunoensayo , Polímeros/química , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie
10.
Anal Chim Acta ; 937: 143-50, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27590556

RESUMEN

Herein, we present a fast and sensitive biosensor for detection of Ochratoxin A (OTA) in a red wine that utilizes gold nanoparticle-enhanced surface plasmon resonance (SPR). By combining an indirect competitive inhibition immunoassay and signal enhancement by secondary antibodies conjugated with gold nanoparticles (AuNPs), highly sensitive detection of low molecular weight compounds (such as OTA) was achieved. The reported biosensor allowed for OTA detection at concentrations as low as 0.75 ng mL(-1) and its limit of detection was improved by more than one order of magnitude to 0.068 ng mL(-1) by applying AuNPs as a signal enhancer. The study investigates the interplay of size of AuNPs and affinity of recognition elements affecting the efficiency of the signal amplification strategy based on AuNP. Furthermore, we observed that the presence of polyphenolic compounds in wine samples strongly interferes with the affinity binding on the surface. To overcome this limitation, a simple pre-treatment of the wine sample with the binding agent poly(vinylpyrrolidone) (PVP) was successfully applied.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Ocratoxinas/análisis , Resonancia por Plasmón de Superficie , Vino/análisis
11.
Talanta ; 156-157: 225-231, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27260457

RESUMEN

This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout.

12.
Biosens Bioelectron ; 85: 272-279, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27179568

RESUMEN

A plasmonic biosensor for rapid detection of protein biomarkers in complex media is reported. Clinical serum samples were analyzed by using a novel biointerface architecture based on poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brushes functionalized with bioreceptors. This biointerface provided an excellent resistance to fouling even after the functionalization and allowed for the first time the direct detection of antibodies against hepatitis B surface antigen (anti-HBs) in clinical serum samples using surface plasmon resonance (SPR). The fabricated SPR biosensor allowed discrimination of anti-HBs positive and negative clinical samples in 10min. Results are validated by enzyme-linked immunoassays of the sera in a certified laboratory. The sensor could be regenerated by simple treatment with glycine buffer.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Hepatitis B/inmunología , Hepatitis B/sangre , Resonancia por Plasmón de Superficie/instrumentación , Acrilamidas/química , Anticuerpos Antivirales/inmunología , Diseño de Equipo , Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Límite de Detección , Propiedades de Superficie
13.
Opt Express ; 22(26): 32026-38, 2014 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-25607170

RESUMEN

Corrugated metallic surfaces offer means for efficient amplification of fluorescence bioassay signal based on the near field coupling between surface plasmons and fluorophore emitters that are used as labels. This paper discusses the design of such plasmonic structure to enhance the sensitivity of immunoassays with epi-fluorescence readout geometry. In particular, crossed gold grating is theoretically and experimentally investigated for combined increasing of the excitation rate at the fluorophore excitation wavelength and utilizing directional surface plasmon-coupled fluorescence emission. For Alexa Fluor 647 dye, the enhancement factor of around EF = 102 was simulated and experimentally measured. When applied to a sandwich interleukin-6 immunoassay, highly surface-selective enhancement reaching a similar value was observed. Besides increasing the measured fluorescence signal associated with the molecular binding events on a surface by two orders of magnitude, the presented approach enables measuring kinetics of the surface reaction that is otherwise masked by strong background signal originating from bulk solution.


Asunto(s)
Bioensayo/instrumentación , Técnicas Biosensibles/instrumentación , Refractometría/instrumentación , Espectrometría de Fluorescencia/instrumentación , Espectrometría Raman/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dispositivos Ópticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...