Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 28(9): 1944-1955, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982307

RESUMEN

Influenza A virus's (IAV's) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV's genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem-loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term 'programmable antivirals', with implications for antiviral prophylaxis and post-exposure therapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus de la Influenza A , Animales , Antivirales/farmacología , Virus de la Influenza A/genética , Ratones , Neuraminidasa , ARN Viral/genética , SARS-CoV-2
2.
Nat Struct Mol Biol ; 28(9): 747-754, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426697

RESUMEN

Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.


Asunto(s)
COVID-19/prevención & control , Microscopía por Crioelectrón/métodos , Mutación del Sistema de Lectura/genética , Oligonucleótidos Antisentido/genética , ARN Viral/genética , Elementos de Respuesta/genética , SARS-CoV-2/genética , Células A549 , Animales , Secuencia de Bases , COVID-19/virología , Línea Celular Tumoral , Chlorocebus aethiops , Genoma Viral/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos Antisentido/farmacología , ARN Viral/química , ARN Viral/ultraestructura , SARS-CoV-2/fisiología , SARS-CoV-2/ultraestructura , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
3.
bioRxiv ; 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32743589

RESUMEN

Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome 1, 2 . The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides 3-6 . To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve 7 pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5' end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.

4.
RNA ; 26(8): 937-959, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32398273

RESUMEN

As the COVID-19 outbreak spreads, there is a growing need for a compilation of conserved RNA genome regions in the SARS-CoV-2 virus along with their structural propensities to guide development of antivirals and diagnostics. Here we present a first look at RNA sequence conservation and structural propensities in the SARS-CoV-2 genome. Using sequence alignments spanning a range of betacoronaviruses, we rank genomic regions by RNA sequence conservation, identifying 79 regions of length at least 15 nt as exactly conserved over SARS-related complete genome sequences available near the beginning of the COVID-19 outbreak. We then confirm the conservation of the majority of these genome regions across 739 SARS-CoV-2 sequences subsequently reported from the COVID-19 outbreak, and we present a curated list of 30 "SARS-related-conserved" regions. We find that known RNA structured elements curated as Rfam families and in prior literature are enriched in these conserved genome regions, and we predict additional conserved, stable secondary structures across the viral genome. We provide 106 "SARS-CoV-2-conserved-structured" regions as potential targets for antivirals that bind to structured RNA. We further provide detailed secondary structure models for the extended 5' UTR, frameshifting stimulation element, and 3' UTR. Lastly, we predict regions of the SARS-CoV-2 viral genome that have low propensity for RNA secondary structure and are conserved within SARS-CoV-2 strains. These 59 "SARS-CoV-2-conserved-unstructured" genomic regions may be most easily accessible by hybridization in primer-based diagnostic strategies.


Asunto(s)
Betacoronavirus/genética , ARN Viral/química , ARN Viral/genética , Secuencia de Bases , Betacoronavirus/clasificación , Evolución Molecular , Genoma Viral , Conformación de Ácido Nucleico , SARS-CoV-2 , Alineación de Secuencia , Termodinámica
5.
ACS Cent Sci ; 2(7): 456-66, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27504492

RESUMEN

Therapeutic targeting of membrane-associated viral proteins is complicated by the challenge of investigating their enzymatic activities in the native membrane-bound state. To permit functional characterization of these proteins, we hypothesized that the supported lipid bilayer (SLB) can support in situ reconstitution of membrane-associated viral protein complexes. As proof-of-principle, we selected the hepatitis C virus (HCV) NS5B polymerase which is essential for HCV genome replication, and determined that the SLB platform enables functional reconstitution of membrane protein activity. Quartz crystal microbalance with dissipation (QCM-D) monitoring enabled label-free detection of full-length NS5B membrane association, its interaction with replicase subunits NS3, NS5A, and template RNA, and most importantly its RNA synthesis activity. This latter activity could be inhibited by the addition of candidate small molecule drugs. Collectively, our results demonstrate that the SLB platform can support functional studies of membrane-associated viral proteins engaged in critical biological activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...