Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Redox Res ; 62022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36533211

RESUMEN

CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.

2.
J Biochem ; 169(4): 387-394, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33289521

RESUMEN

A set of C43(DE3) and BL21(DE3) Escherichia coli host strains that are auxotrophic for various amino acids is briefly reviewed. These strains require the addition of a defined set of one or more amino acids in the growth medium, and have been specifically designed for overproduction of membrane or water-soluble proteins selectively labelled with stable isotopes, such as 2H, 13C and 15N. The strains described here are available for use and have been deposited into public strain banks. Although they cannot fully eliminate the possibility of isotope dilution and mixing, metabolic scrambling of the different amino acid types can be minimized through a careful consideration of the bacterial metabolic pathways. The use of a suitable auxotrophic expression host strain with an appropriately isotopically labelled growth medium ensures high levels of isotope labelling efficiency as well as selectivity for providing deeper insight into protein structure-function relationships.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Escherichia coli/genética , Dominios Proteicos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA