Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Toxicol Pathol ; 35(4): 321-331, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36406167

RESUMEN

In subcutaneous tumor models, changes in the tumor microenvironment can lead to differences in therapeutic treatment responses between the subcutaneous and parent tumors. Accordingly, we generated a lung carcinogenesis model that combines genetically modified mice (Tg-rasH2 mice) with two-stage chemical carcinogenesis as an alternative to the subcutaneous tumor model. In this model, Tg-rasH2 mice were treated with 1-ethyl-1-nitrosourea, followed by butylhydroxytoluene. Mice developed lung adenomas five weeks after treatment initiation. Subsequently, anti-mouse PD-1 antibody (α-mPD-1) or isotype control was administered intraperitoneally twice a week for 4 weeks. Tumor growth was examined by measuring the relative tumor area in serially sliced lung histopathological specimens. No statistically significant differences were observed in the relative lung tumor areas between treated and control groups. A second experiment then examined the antitumor efficacy of α-mPD-1 combined with gemcitabine in a mouse model. Mice were treated identically as in Experiment 1, except that the treated group received once-weekly intraperitoneal injections of 10 mg/kg gemcitabine. In contrast to Experiment 1, the combined treatment significantly reduced the relative tumor areas in the lungs. This result also resembles that of a phase III clinical trial (ORIENT-12), showing that patients with non-small-cell lung carcinoma benefited from combination treatment with gemcitabine and the anti-human PD-1 antibody sintilimab. Thus, this mouse model could be a feasible means to preclinically evaluate the antitumor efficacy of different immunotherapy and chemotherapy drug combinations.

2.
J Toxicol Pathol ; 33(1): 11-19, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32051660

RESUMEN

Intratracheal instillation is the introduction of a substance directly into the trachea. Intratracheal instillation has been used to investigate the lung toxicity of several chemicals and requires the suspension or dissolution of test material in a vehicle for even dispersal throughout the lung. Importantly, the toxicities of vehicles used in intratracheal instillation studies are generally considered to be insignificant. Hence, evaluating the influence of different vehicles on the lung due to intratracheal instillation is crucial. We examined the toxic effects of pure water, saline, phosphate buffered saline (PBS), 0.5% Kolliphor® P188 (KP188), 0.1% Tween 20 in saline, and 1.0% BSA in PBS. These vehicles were administered to male Crl:CD(SD) rats by a single intratracheal instillation. On day 3, broncho-alveolar lavage fluid (BALF) from the right lung was collected and processed for cell counting and biochemical analysis, while the left lung was used for histopathological examination. Accumulation of alveolar macrophages was observed in all vehicle-treated groups but was minimal in the group administered saline, somewhat higher in the groups administered pure water, PBS, 0.1% Tween 20, and 1% BSA, and notably higher in the group administered 0.5% KP188. The results from BALF analysis indicated that intratracheal instillation of 0.5% KP188 also induced alveolar damage. Additionally, administering pure water did not appear to cause tissue damage. Eosinophil infiltration in the interstitial regions was histopathologically observed. Altogether, the results of this study are helpful for the selection of appropriate vehicles for use in intratracheal instillation studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...