Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genome Med ; 15(1): 114, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098057

RESUMEN

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Asunto(s)
Exoma , Patrón de Herencia , Recién Nacido , Humanos , Genes Recesivos , Mutación , Secuenciación del Exoma , Linaje , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Dose Response ; 19(2): 15593258211019880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177396

RESUMEN

Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 µg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.

3.
Acta Haematol ; 143(6): 583-593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32541138

RESUMEN

Acute myeloid leukemia (AML) in the setting of Noonan syndrome (NS) has been reported before without clear guidelines for treatment or prognosis in these subgroups of patients, most likely due to its rarity and incomplete understanding of the pathogenesis of both diseases. In the current era of next-generation sequencing-based genomic analysis, we can better identify patients with NS with more accurate AML-related prognostic markers. Germline mutations in PTPN11 are the most common cause of NS. Somatic mutations in NPM1 occur frequently in AML. Here, we describe a young adult patient with a novel combined germline PTPN11 and somatic NPM1, IDH1,and BCL6 mutations who presented with fatal AML. In addition, a 50.5-Mb interstitial deletion of 7q21.11-q33 in tumor DNA was detected by chromosomal microarray analysis. While mutations in the transcriptional repressor BCL6 are known to contribute to the pathogenesis of diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL), its novel identification in this patient suggests an expanded role in aggressive AML. The identification of key molecular aberrations including the overexpression of SHP2, which drives leukemogenesis and tumorigenesis, has led to the development of novel investigational targeted SHP2 inhibitors.


Asunto(s)
Mutación de Línea Germinal , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Síndrome de Noonan/genética , Proteínas Nucleares/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Adulto , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patología , Nucleofosmina
4.
OMICS ; 24(1): 16-28, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855513

RESUMEN

Congenital heart diseases (CHDs) are complex traits that manifest in diverse clinical phenotypes such as the Tetralogy of Fallot (TOF), valvular and ventricular/atrial septal defects. Genetic mechanisms of CHDs have remained largely unclear to date. Copy number variations (CNVs) have been implicated in many complex diseases but their impact has not been examined extensively in various forms of CHD lesions. We report in this study, to the best of our knowledge, the largest cohort of Saudi Arab CHD patients to date who were evaluated using genome-wide CNV analysis. In a sample of 134 Saudi Arab patients with CHD, 66 exhibited pathogenic or likely pathogenic CNVs. Notably, 21 copy number gains and 11 copy number losses were detected that encompassed 141 genes and 146 genes, respectively. The most frequent gains were on 17q21.31, 8p11.21, and 22q11.23, whereas the losses were primarily localized to 16p11.2. Interestingly, all lesions have had gains at 17q21.31. Septal defects had also gains at 8p11.21 and 22q11.23, valvular lesions at 8p11.21, 22q11.23, and 2q13, and TOF at 16p11.2. Functional and network analyses demonstrated that cardiovascular and nervous system development and function as well as cell death/survival were most significantly associated with CNVs, thus highlighting the potentially important genes likely to be involved in CHD, including NPHP1, PLCB1, KANSL1, and NR3C1. In conclusion, this genome-wide analysis identifies a high frequency of CNVs mostly in patients with septal defects, primarily influencing cardiovascular developmental and functional pathways, thereby offering a deeper insight into the complex networks involved in CHD pathogenesis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Adulto , Aberraciones Cromosómicas , Biología Computacional/métodos , Femenino , Redes Reguladoras de Genes , Sitios Genéticos , Pruebas Genéticas , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Arabia Saudita
5.
Case Rep Genet ; 2018: 9468049, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30643655

RESUMEN

Hereditary sensory and autonomic neuropathies (HSANs) are a clinically and genetically heterogeneous group of disorders involving various sensory and autonomic dysfunctions. The most common symptoms of HSANs include loss of sensations of pain and temperature that frequently lead to chronic ulcerations in the feet and hands of the patient. In this case study, we present the clinical features and genetic characteristics of two affected individuals from two unrelated Saudi families presenting mutilating sensory loss and spastic paraplegia. We employed homozygosity mapping and exome sequencing which is an efficient strategy to characterize the recessive genes, thus obtaining a rapid molecular diagnosis for genetically heterogeneous disorders like HSAN. Subsequently, a nonsense mutation (c.926 C>G; p.S309⁎) in FAM134B was identified. In addition, we confirmed that the mutant FAM134B transcripts were reduced in these patients presumably disrupting the receptors of the degradative endoplasmic reticulum pathways that facilitate the autophagy processes.

6.
Data Brief ; 7: 172-176, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27761488

RESUMEN

The data shows results acquired in a large cohort of 5668 ethnic Arabs involved in a common variants association study for coronary artery disease (CAD) and myocardial infarction (MI) using the Affymetrix Axiom Genotyping platform ("A genome-wide association study reveals susceptibility loci for myocardial infarction/coronary artery disease in Saudi Arabs" Wakil et al. (2015) [1] ). Several loci were described that conferred risk for CAD or MI, some of which were validated in an independent set of samples. Principal Component (PCA) analysis suggested that the Saudi Cohort was close to the CEU and TSI populations, thus pointing to similarity with European populations.

7.
Am J Hum Genet ; 98(4): 643-52, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27018474

RESUMEN

Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.


Asunto(s)
Anomalías Múltiples/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido/genética , Fosfoproteínas/genética , Adulto , Alelos , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Niño , Preescolar , Codón sin Sentido , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Fosforilación , Polimorfismo de Nucleótido Simple , ARN Mensajero , Arabia Saudita
8.
Atherosclerosis ; 245: 62-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708285

RESUMEN

BACKGROUND: Multiple loci have been identified for coronary artery disease (CAD) by genome-wide association studies (GWAS), but no such studies on CAD incidence has been reported yet for any Middle Eastern population. METHODS: In this study, we performed a GWAS for CAD and myocardial infarction (MI) incidence in 5668 Saudis of Arab descent using the Affymetrix Axiom Genotyping platform. RESULTS: We describe SNPs at 16 loci that showed significant (P < 5 × 10(-8)) or suggestive GWAS association (P < 1 × 10(-5)) with CAD or MI, in the ethnic Saudi Arab population. Among the four variants reaching GWAS significance in the present study, the rs10738607_G [0.78(0.71-0.85); p = 2.17E-08] in CDNK2A/B gene was associated with CAD. Two other SNPs on the same gene, rs10757274_G [0.79(0.73-0.86); p = 2.98E-08] and rs1333045_C [0.79(0.73-0.86); p = 1.15E-08] as well as the rs9982601_T [1.38(1.23-1.55); p = 3.49E-08] on KCNE2 were associated with MI. These variants have been previously described in other populations. Several SNPs, including the rs7421388 (PLCL1) and rs12541758 (TRPA1) displaying a suggestive GWAS association (P < 1 × 10(-5)) with CAD as well as rs41411047 (RNF13), rs32793 (PDZD2) and rs4739066 (YTHDF3), similarly showing weak association with MI, were confirmed in an independent dataset. Furthermore, our estimation of heritability of CAD and MI based on observed genome-wide sharing in unrelated Saudi Arabs was approximately 33% and 44%, respectively. CONCLUSIONS: Our study has identified susceptibility variants for CAD/MI in ethnic Arabs. These findings provide further insights into pathways contributing to the susceptibility for CAD and will enable more comprehensive genetic studies of these diseases in Middle East populations.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Infarto del Miocardio/genética , Enfermedad de la Arteria Coronaria/metabolismo , Femenino , Genotipo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Infarto del Miocardio/metabolismo , Factores de Riesgo , Arabia Saudita/epidemiología
9.
Genet Med ; 17(9): 719-25, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25503496

RESUMEN

PURPOSE: Molecular karyotyping has rapidly become the test of choice in patients with neurocognitive phenotypes, but studies of its clinical utility have largely been limited to outbred populations. In consanguineous populations, single-gene recessive causes of neurocognitive phenotypes are expected to account for a relatively high percentage of cases, thus diminishing the yield of molecular karyotyping. The aim of this study was to test the clinical yield of molecular karyotyping in the highly consanguineous population of Saudi Arabia. METHODS: We have reviewed the data of 584 patients with neurocognitive phenotypes (mainly referred from pediatric neurology clinics), all evaluated by a single clinical geneticist. RESULTS: At least 21% of tested cases had chromosomal aberrations that are likely disease-causing. These changes include both known and novel deletion syndromes. The higher yield of molecular karyotyping in this study as compared with the commonly cited 11% can be explained by our ability to efficiently identify single-gene disorders, thus enriching the samples that underwent molecular karyotyping for de novo chromosomal aberrations. We show that we were able to identify a causal mutation in 37% of cases on a clinical basis with the help of autozygome analysis, thus bypassing the need for molecular karyotyping. CONCLUSION: Our study confirms the clinical utility of molecular karyotyping even in highly consanguineous populations.


Asunto(s)
Trastornos de los Cromosomas/genética , Consanguinidad , Trastornos Neurocognitivos/genética , Adolescente , Adulto , Niño , Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/epidemiología , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Cariotipificación/métodos , Masculino , Trastornos Neurocognitivos/diagnóstico , Trastornos Neurocognitivos/epidemiología , Fenotipo , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Arabia Saudita/epidemiología , Adulto Joven
10.
Gene ; 536(1): 217-20, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24315819

RESUMEN

Recessive mutations in the alsin gene cause three clinically distinct motor neuron diseases: juvenile amyotrophic lateral sclerosis (ALS2), juvenile primary lateral sclerosis (JPLS) and infantile-onset ascending hereditary spastic paraplegia (IAHSP). A total of 23 different ALS2 mutations have been described for the three disorders so far. Most of these mutations result in a frameshift leading to a premature truncation of the alsin protein. We report the novel ALS2 truncating mutation c.2761C>T; p.R921X detected by homozygosity mapping and sequencing in two infants affected by IAHSP with bulbar involvement. The mutation c.2761C>T resides in the pleckstrin domain, a characteristic segment of guanine nucleotide exchange factors of the Rho GTPase family, which is involved in the overall neuronal development or maintenance. This study highlights the importance of using homozygosity mapping combined with candidate gene analysis to identify the underlying genetic defect as in this Saudi consanguineous family.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Paraplejía Espástica Hereditaria/genética , Edad de Inicio , Niño , Preescolar , Consanguinidad , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Masculino , Mutación Missense/fisiología , Linaje , Polimorfismo de Nucleótido Simple/fisiología , Estructura Terciaria de Proteína/genética , Hermanos
11.
Hum Genomics ; 7: 25, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24330461

RESUMEN

BACKGROUND: The study was designed to evaluate the association of GATA4 gene polymorphism with coronary artery disease (CAD) and its metabolic risk factors, including dyslipidaemic disorders, obesity, type 2 diabetes and hypertension, following a preliminary study linking early onset of CAD in heterozygous familial hypercholesterolaemia to chromosome 8, which harbours the GATA4 gene. RESULTS: We first sequenced the whole GATA4 gene in 250 individuals to identify variants of interest and then investigated the association of 12 single-nucleotide polymorphisms (SNPs) with the disease traits using Taqman chemistry in 4,278 angiographed Saudi individuals. Of the studied SNPs, rs804280 (1.14 (1.03 to 1.27); p = 0.009) was associated with CAD (2,274 cases vs 2,004 controls), hypercholesterolaemia (1,590 vs 2,487) (1.61 (1.03-2.52); p = 0.037) and elevated low-density lipoprotein-cholesterol (hLDLC) (575 vs 3,404) (1.87 (1.10-3.15); p = 0.020). Additionally, rs3729855_T (1.52 (1.09-2.11; p = 0.013)) and rs17153743 (AG + GG) (2.30 (1.30-4.26); p = 0.005) were implicated in hypertension (3,312 vs 966), following adjustments for confounders. Furthermore, haplotypes CCCGTGCC (χ2 = 4.71; p = 0.041) and GACCCGTG (χ2 = 3.84; p = 0.050) constructed from the SNPs were associated with CAD and ACCCACGC (χ2 = 6.58; p = 0.010) with myocardial infarction, while hypercholesterolaemia (χ2 = 3.86; p = 0.050) and hLDLC (χ2 = 4.94; p = 0.026) shared the AACCCATGT, and AACCCATGTC was associated with hLDLC (χ2 = 4.83; p = 0.028). A 10-mer GACCCGCGCC (χ2 = 7.59; p = 0.006) was associated with obesity (1,631 vs 2,362), and the GACACACCC (χ2 = 4.05; p = 0.044) was implicated in type 2 diabetes mellitus 2,378 vs 1,900). CONCLUSION: Our study implicates GATA4 in CAD and its metabolic risk traits. The finding also points to the possible involvement of yet undefined entities related to GATA4 transcription activity or gene regulatory pathways in events leading to these cardiovascular disorders.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Factor de Transcripción GATA4/genética , Enfermedades Metabólicas/genética , Infarto del Miocardio/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 8/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Factor de Transcripción GATA4/metabolismo , Predisposición Genética a la Enfermedad , Haplotipos , Heterocigoto , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Obesidad/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADN
12.
Eur J Med Genet ; 56(1): 43-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23085305

RESUMEN

Hereditary Spastic Paraplegias (HSP) encompass a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by insidiously progressive weakness and spasticity of the lower extremities. We describe a consanguineous Saudi family segregating a complicated form of HSP in an autosomal recessive pattern. The two affected siblings had early onset, cognitive, speech and motor involvement with spasticity of the lower extremities. Their upper extremities were mildly hypertonic. An intronic splice acceptor site mutation in ERLIN2 was found to be responsible for causing this disorder found in this family. ERLIN2 is a mediator of endoplasmic reticulum degradation pathway (ERAD) which helps to remove the aberrant proteins. Our results, in concurrence with previous studies suggest that alteration in ERLIN2 is one of the causes of complicated HSP, thereby increasing the spectrum of known mutations in SPG18.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Sitios de Empalme de ARN , Paraplejía Espástica Hereditaria/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Consanguinidad , Orden Génico , Homocigoto , Humanos , Masculino , Linaje , Arabia Saudita , Paraplejía Espástica Hereditaria/diagnóstico
13.
Genet Med ; 14(5): 515-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22241088

RESUMEN

PURPOSE: Copy number variants are an important source of human genome diversity. The widespread distribution of hemizygous copy number variants in the DNA of healthy humans suggests that haploinsufficiency is largely tolerated. However, little is known about the extent to which corresponding nullizygosity (two-copy deletion) is similarly tolerated. METHODS: We analyzed a cohort of first cousin unions to enrich for shared parental hemizygous events and tested their Mendelian inheritance in offspring. RESULTS: Analysis of autozygous DNA blocks (autozygome) in the offspring not only proved an efficient method of mapping "dispensable" DNA but also revealed potential selective bias against the occurrence of nullizygous changes. This bias was not restricted to genic copy number variants and was not accounted for by a high rate of miscarriages. CONCLUSIONS: The autozygome is an efficient way to map dispensable segments of DNA and may reveal selective bias against nullizygosity in healthy individuals.


Asunto(s)
Mapeo Cromosómico/métodos , Variaciones en el Número de Copia de ADN/genética , Hemicigoto , Eliminación de Secuencia/genética , Estudios de Cohortes , Consanguinidad , ADN/sangre , Femenino , Dosificación de Gen , Genoma Humano , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...