Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 13(3): e1006614, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28301465

RESUMEN

Structural Maintenance of Chromosomes (SMC) family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II); C. elegans has three (I, II, and the X-chromosome specialized condensin IDC) and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Meiosis/genética , Microscopía Confocal , Mitosis/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Cromosoma X/genética
2.
G3 (Bethesda) ; 4(1): 143-53, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24281426

RESUMEN

During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM transcription factor complex, named for its Dp/E2F, Retinoblastoma-like, and MuvB subunits, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, "yin-yang" regulation by MES-4 and DRM ensures transcript levels appropriate for germ-cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Cromosoma X/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Transactivadores/genética , Transactivadores/metabolismo , Cromosoma X/genética
3.
Mol Cell Proteomics ; 11(8): 501-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22474084

RESUMEN

Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans/análisis , Cromatografía de Afinidad/métodos , Proteínas de Schizosaccharomyces pombe/análisis , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Cromatografía Liquida/métodos , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteómica/métodos , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
PLoS Genet ; 7(5): e1002074, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21589891

RESUMEN

DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cromosomas , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Animales
6.
Curr Biol ; 19(1): 9-19, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-19119011

RESUMEN

BACKGROUND: Condensin complexes organize chromosome structure and facilitate chromosome segregation. Higher eukaryotes have two complexes, condensin I and condensin II, each essential for chromosome segregation. The nematode Caenorhabditis elegans was considered an exception, because it has a mitotic condensin II complex but appeared to lack mitotic condensin I. Instead, its condensin I-like complex (here called condensin I(DC)) dampens gene expression along hermaphrodite X chromosomes during dosage compensation. RESULTS: Here we report the discovery of a third condensin complex, condensin I, in C. elegans. We identify new condensin subunits and show that each complex has a conserved five-subunit composition. Condensin I differs from condensin I(DC) by only a single subunit. Yet condensin I binds to autosomes and X chromosomes in both sexes to promote chromosome segregation, whereas condensin I(DC) binds specifically to X chromosomes in hermaphrodites to regulate transcript levels. Both condensin I and II promote chromosome segregation, but associate with different chromosomal regions during mitosis and meiosis. Unexpectedly, condensin I also localizes to regions of cohesion between meiotic chromosomes before their segregation. CONCLUSIONS: We demonstrate that condensin subunits in C. elegans form three complexes, one that functions in dosage compensation and two that function in mitosis and meiosis. These results highlight how the duplication and divergence of condensin subunits during evolution may facilitate their adaptation to specialized chromosomal roles and illustrate the versatility of condensins to function in both gene regulation and chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Caenorhabditis elegans/genética , Segregación Cromosómica/fisiología , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Compensación de Dosificación (Genética)/genética , Regulación de la Expresión Génica/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/fisiología , División del Núcleo Celular/fisiología , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética)/fisiología , Evolución Molecular , Regulación de la Expresión Génica/fisiología , Inmunoprecipitación , Complejos Multiproteicos/metabolismo , Proteómica/métodos , Interferencia de ARN
7.
Genetics ; 168(3): 1371-84, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15579691

RESUMEN

In the work reported here we have analyzed the role of the GAGA factor [encoded by the Trithorax-like (Trl) gene] in the enhancer-blocking activity of Frontabdominal-7 (Fab-7), a domain boundary element from the Drosophila melanogaster bithorax complex (BX-C). One of the three nuclease hypersensitive sites in the Fab-7 boundary, HS1, contains multiple consensus-binding sequences for the GAGA factor, a protein known to be involved in the formation and/or maintenance of nucleosome-free regions of chromatin. GAGA protein has been shown to localize to the Fab-7 boundary in vivo, and we show that it recognizes sequences from HS1 in vitro. Using two different transgene assays we demonstrate that GAGA-factor-binding sites are necessary but not sufficient for full Fab-7 enhancer-blocking activity. We show that distinct GAGA sites are required for different enhancer-blocking activities at different stages of development. We also show that the enhancer-blocking activity of the endogenous Fab-7 boundary is sensitive to mutations in the gene encoding the GAGA factor Trithorax-like.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Factores de Transcripción/genética
8.
Chromosoma ; 112(7): 360-71, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15133681

RESUMEN

Histone phosphorylation has long been associated with condensed mitotic chromatin; however, the functional roles of these modifications are not yet understood. Histones H1 and H3 are highly phosphorylated from late G2 through telophase in many organisms, and have been implicated in chromatin condensation and sister chromatid segregation. However, mutational analyses in yeast and biochemical experiments with Xenopus extracts have demonstrated that phosphorylation of H1 and H3 is not essential for such processes. In this study, we investigated additional histone phosphorylation events that may have redundant functions to H1 and H3 phosphorylation during mitosis. We developed an antibody to H4 and H2A that are phosphorylated at their respective serine 1 (S1) residues and found that H4S1/H2AS1 are highly phosphorylated in the mitotic chromatin of worm, fly, and mammals. Mitotic H4/H2A phosphorylation has similar timing and localization as H3 phosphorylation, and closely correlates with the chromatin condensation events during mitosis. We also detected a lower level of H4/H2A phosphorylation in 5-bromo-2-deoxyuridine-positive S-phase cells, which corroborates earlier studies that identified H4S1 phosphorylation on newly synthesized histones during S-phase. The evolutionarily conserved phosphorylation of H4/H2A during the cell cycle suggests that they may have a dual purpose in chromatin condensation during mitosis and histone deposition during S-phase.


Asunto(s)
Evolución Molecular , Histonas/metabolismo , Mitosis , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Anticuerpos/aislamiento & purificación , Anticuerpos/metabolismo , Cromatina/química , Cromatina/metabolismo , Secuencia Conservada , Células HeLa , Histonas/análisis , Histonas/química , Humanos , Interfase , Datos de Secuencia Molecular , Fosforilación , Serina/química , Regulación hacia Arriba
9.
Nat Rev Genet ; 4(7): 520-34, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12838344

RESUMEN

Two related protein complexes, cohesin and condensin, are essential for separating identical copies of the genome into daughter cells during cell division. Cohesin glues replicated sister chromatids together until they split at anaphase, whereas condensin reorganizes chromosomes into their highly compact mitotic structure. Unexpectedly, mutations in the subunits of these complexes have been uncovered in genetic screens that target completely different processes. Exciting new evidence is emerging that cohesin and condensin influence crucial processes during interphase, and unforeseen aspects of mitosis. Each complex can perform several roles, and individual subunits can associate with different sets of proteins to achieve diverse functions, including the regulation of gene expression, DNA repair, cell-cycle checkpoints and centromere organization.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Animales , Proteínas de Ciclo Celular , Cromatina/fisiología , Proteínas Cromosómicas no Histona , Replicación del ADN/fisiología , Proteínas Fúngicas , Humanos , Complejos Multiproteicos , Saccharomyces cerevisiae/metabolismo , Cohesinas
10.
Genes Dev ; 16(6): 729-42, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11914278

RESUMEN

Chromosome segregation and X-chromosome gene regulation in Caenorhabditis elegans share the component MIX-1, a mitotic protein that also represses X-linked genes during dosage compensation. MIX-1 achieves its dual roles through interactions with different protein partners. To repress gene expression, MIX-1 acts in an X-chromosome complex that resembles the mitotic condensin complex yet lacks chromosome segregation function. Here we show that MIX-1 interacts with a mitotic condensin subunit, SMC-4, to achieve chromosome segregation. The SMC-4/MIX-1 complex positively supercoils DNA in vitro and is required for mitotic chromosome structure and segregation in vivo. Thus, C. elegans has two condensin complexes, one conserved for mitosis and another specialized for gene regulation. SMC-4 and MIX-1 colocalize with centromere proteins on condensed mitotic chromosomes and are required for the restricted orientation of centromeres toward spindle poles. This cell cycle-dependent localization requires AIR-2/AuroraB kinase. Depletion of SMC-4/MIX-1 causes aberrant mitotic chromosome structure and segregation, but not dramatic decondensation at metaphase. Moreover, SMC-4/MIX-1 depletion disrupts sister chromatid segregation during meiosis II but not homologous chromosome segregation during meiosis I, although both processes require chromosome condensation. These results imply that condensin is not simply required for compaction, but plays a more complex role in chromosome architecture that is essential for mitotic and meiotic sister chromatid segregation.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasa B , Aurora Quinasas , Caenorhabditis elegans/química , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Superhelicoidal , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Ligamiento Genético , Proteínas del Helminto/metabolismo , Histonas/metabolismo , Hibridación Fluorescente in Situ , Meiosis , Microscopía Fluorescente , Mitosis , Complejos Multiproteicos , Fosforilación , Pruebas de Precipitina , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Bacteriano/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Intercambio de Cromátides Hermanas , Factores de Tiempo , Cromosoma X , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...