Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Virchows Arch ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890171

RESUMEN

Tumor-associated antigens (TAAs) are potential targets for T cell-based immunotherapy approaches in cutaneous melanoma. BNT111, an investigational lipoplex-formulated mRNA-based therapeutic cancer vaccine encoding melanoma TAAs NY-ESO-1, tyrosinase, MAGE-A3, and TPTE, is undergoing clinical testing in adults. Expression of these TAAs in pediatric melanoma is unclear but is a prerequisite for feasibility of this treatment approach in children with melanoma. Our main objective was to characterize expression of those TAAs in pediatric melanomas compared to control cohorts. In this retrospective case control study, protein and transcript expression of NY-ESO-1, tyrosinase, MAGE-A3, and TPTE were analyzed in a cohort of 25 pediatric melanomas, 31 melanomas of young adults, 29 adult melanomas, and 30 benign melanocytic nevi in children using immunohistochemical staining and digital pathology (QuPath) and reverse transcription quantitative PCR. Based on IHC analysis, pediatric melanomas expressed tyrosinase (100.0%), TPTE (44.0%), MAGE-A3 (12.0%), and NY-ESO-1 (8.0%). Young adult melanomas expressed tyrosinase (96.8%), NY-ESO-1 (19.4%), MAGE-A3 (19.4%), and TPTE (3.2%). Adult melanomas expressed tyrosinase (86.2%), MAGE-A3 (75.9%), NY-ESO-1 (48.3%), and TPTE (48.3%). Childhood melanocytic nevi only expressed tyrosinase (93.3%). Expression prevalence of individual TAAs did not differ between subtypes of pediatric melanoma, and no association with prognosis was found. All four TAAs were expressed in pediatric melanoma, albeit NY-ESO-1 and MAGE-A3 to a lesser extent than in adult melanoma. These data support the possibility of investigating vaccines targeting these TAAs for the treatment of pediatric melanoma.

2.
Nature ; 629(8014): 1015-1020, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811709

RESUMEN

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.

3.
Pigment Cell Melanoma Res ; 37(4): 453-461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509752

RESUMEN

Pediatric melanomas are rare tumors that have clinical and histological differences from adult melanomas. In adult melanoma, the immunohistochemical marker PRAME is increasingly employed as a diagnostic adjunct. PRAME is also under investigation as a target structure for next-generation immunotherapies including T-cell engagers. Little is known about the characteristics of PRAME expression in pediatric melanoma. In this retrospective study, samples from 25 pediatric melanomas were compared with control groups of melanomas in young adults (18-30 years; n = 32), adult melanoma (>30 years, n = 30), and benign melanocytic nevi in children (0-18 years; n = 30) with regard to the immunohistochemical expression of PRAME (diffuse PRAME expression >75%/absolute expression). Pediatric melanomas show lower diffuse PRAME expression (4%) and lower absolute PRAME expression (25%) compared to young adult melanomas (15.6%/46.8%) and adult melanomas (50%/70%). A significant age-dependent expression could be observed. An analysis of event-free survival shows no prognostic role for PRAME in pediatric melanoma and young adult melanoma, but a significant association with diffuse PRAME expression in adulthood. The age dependency of PRAME expression poses a potential pitfall in the diagnostic application of melanocytic tumors in young patients and may limit therapeutic options within this age group. The immunohistochemical expression of the tumor-associated antigen PRAME is an increasingly important diagnostic marker for melanocytic tumors and is gaining attention as a possible immunotherapeutic target in melanoma. As the available data primarily stem from adult melanoma, and given the clinical and histological distinctions in pediatric melanomas, our understanding of PRAME expression in this specific patient group remains limited. The age-dependent low PRAME expression shown here constrains the use of this marker in pediatric melanoma and may also limit the use of immunotherapeutic strategies against PRAME in young patients.


Asunto(s)
Antígenos de Neoplasias , Inmunohistoquímica , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Melanoma/metabolismo , Antígenos de Neoplasias/metabolismo , Adulto , Adolescente , Adulto Joven , Niño , Masculino , Femenino , Preescolar , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Biomarcadores de Tumor/metabolismo , Lactante , Persona de Mediana Edad , Estudios Retrospectivos , Recién Nacido , Pronóstico , Anciano
4.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535224

RESUMEN

While Botrytis cinerea causes gray mold on many plants, its close relative, Botrytis fabae, is host-specifically infecting predominantly faba bean plants. To explore the basis for its narrow host range, a gapless genome sequence of B. fabae strain G12 (BfabG12) was generated. The BfabG12 genome encompasses 45.0 Mb, with 16 chromosomal telomere-to-telomere contigs that show high synteny and sequence similarity to the corresponding B. cinerea B05.10 (BcB0510) chromosomes. Compared to BcB0510, it is 6% larger, due to many AT-rich regions containing remnants of transposable elements, but encodes fewer genes (11,420 vs. 11,707), due to losses of chromosomal segments with up to 20 genes. The coding capacity of BfabG12 is further reduced by nearly 400 genes that had been inactivated by mutations leading to truncations compared to their BcB0510 orthologues. Several species-specific gene clusters for secondary metabolite biosynthesis with stage-specific expression were identified. Comparison of the proteins secreted during infection revealed high similarities, including 17 phytotoxic proteins that were detected in both species. Our data indicate that evolution of the host-specific B. fabae occurred from an ancestral pathogen with wide host range similar to B. cinerea and was accompanied by losses and degeneration of genes, thereby reducing its pathogenic flexibility.

5.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301663

RESUMEN

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Asunto(s)
Técnicas Biosensibles , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estrés Fisiológico , Oxidación-Reducción , Glutatión/metabolismo , Técnicas Biosensibles/métodos
6.
mBio ; 14(4): e0107723, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37409814

RESUMEN

Botrytis cinerea causes gray mold disease in leading crop plants. The disease develops only at cool temperatures, but the fungus remains viable in warm climates and can survive periods of extreme heat. We discovered a strong heat priming effect in which the exposure of B. cinerea to moderately high temperatures greatly improves its ability to cope with subsequent, potentially lethal temperature conditions. We showed that priming promotes protein solubility during heat stress and discovered a group of priming-induced serine-type peptidases. Several lines of evidence, including transcriptomics, proteomics, pharmacology, and mutagenesis data, link these peptidases to the B. cinerea priming response, highlighting their important roles in regulating priming-mediated heat adaptation. By imposing a series of sub-lethal temperature pulses that subverted the priming effect, we managed to eliminate the fungus and prevent disease development, demonstrating the potential for developing temperature-based plant protection methods by targeting the fungal heat priming response. IMPORTANCE Priming is a general and important stress adaptation mechanism. Our work highlights the importance of priming in fungal heat adaptation, reveals novel regulators and aspects of heat adaptation mechanisms, and demonstrates the potential of affecting microorganisms, including pathogens through manipulations of the heat adaptation response.

7.
Nat Commun ; 14(1): 3621, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336953

RESUMEN

The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/metabolismo , Cisteína/metabolismo , Ligandos , Proteínas/metabolismo , Oomicetos/metabolismo , Bacterias/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Microbiol Spectr ; 11(4): e0010823, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37318357

RESUMEN

Botrytis cinerea causes gray mold on thousands of plants, leading to huge losses in production. Anilinopyrimidine (AP) fungicides have been applied to control B. cinerea since the 1990s. Although resistance to AP fungicides was detected soon after their application, the mechanism of AP resistance remains to be elucidated. In this study, a sexual cross between resistant and sensitive isolates was performed, and the genomes of parental isolates and progenies were sequenced to identify resistance-related single nucleotide polymorphisms (SNPs). After screening and verification, mutation E407K in the Bcmdl1 gene was identified and confirmed to confer resistance to AP fungicides in B. cinerea. Bcmdl1 was predicted to encode a mitochondrial protein that belonged to a half-type ATP-binding cassette (ABC) transporter. Although Bcmdl1 was a transporter, it did not mediate resistance to multiple fungicides but mediated resistance specifically to AP fungicides. On the other hand, reductions in conidial germination and virulence were observed in Bcmdl1 knockout transformants compared to the parental isolate and complemented transformants, illustrating the biological functions of Bcmdl1. Subcellular localization analysis indicated that Bcmdl1 was localized in mitochondria. Interestingly, the production of ATP was reduced after cyprodinil treatment in Bcmdl1 knockout transformants, suggesting that Bcmdl1 was involved in ATP synthesis. Since Mdl1 could interact with ATP synthase in yeast, we hypothesize that Bcmdl1 forms a complex with ATP synthase, which AP fungicides might target, thereby interfering with the metabolism of energy. IMPORTANCE Gray mold, caused by B. cinerea, causes huge losses in the production of many fruits and vegetables. AP fungicides have been largely adopted to control this disease since the 1990s, and the development of resistance to AP fungicides initiates new problems for disease control. Due to the unknown mode of action, information on the mechanism of AP resistance is also limited. Recently, mutations in mitochondrial genes were reported to be related to AP resistance. However, the mitochondrial process of these genes remains to be elucidated. In this study, we identified several AP resistance-related mutations by quantitative trait locus sequencing (QTL-seq) and confirmed that mutation E407K in Bcmdl1 conferred AP resistance. We further characterized the expression patterns, biological functions, subcellular localization, and mitochondrial processes of the Bcmdl1 gene. This study deepens our understanding of the mechanism of resistance to and mode of action of AP fungicides.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Fungicidas Industriales , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Fungicidas Industriales/farmacología , Esporas Fúngicas/metabolismo , Virulencia , Adenosina Trifosfato , Enfermedades de las Plantas , Farmacorresistencia Fúngica
9.
New Phytol ; 238(2): 817-834, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36651012

RESUMEN

SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates ß-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.


Asunto(s)
Sumoilación , Ubiquitina-Proteína Ligasas , Temperatura , Ubiquitina-Proteína Ligasas/metabolismo , Estrés Oxidativo , Daño del ADN
10.
Mol Plant Pathol ; 24(1): 3-15, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36168919

RESUMEN

Plant immune responses are triggered during the interaction with pathogens. The fungus Botrytis cinerea has previously been reported to use small RNAs (sRNAs) as effector molecules capable of interfering with the host immune response. Conversely, a host plant produces sRNAs that may interfere with the infection mechanism of an intruder. We used high-throughput sequencing to identify sRNAs produced by B. cinerea and Solanum lycopersicum (tomato) during early phases of interaction and to examine the expression of their predicted mRNA targets in the other organism. A total of 7042 B. cinerea sRNAs were predicted to target 3185 mRNAs in tomato. Of the predicted tomato target genes, 163 were indeed transcriptionally down-regulated during the early phase of infection. Several experiments were performed to study a causal relation between the production of B. cinerea sRNAs and the down-regulation of predicted target genes in tomato. We generated B. cinerea mutants in which a transposon region was deleted that is the source of c.10% of the fungal sRNAs. Furthermore, mutants were generated in which both Dicer-like genes (Bcdcl1 and Bcdcl2) were deleted and these displayed a >99% reduction of transposon-derived sRNA production. Neither of these mutants was significantly reduced in virulence on any plant species tested. Our results reveal no evidence for any detectable role of B. cinerea sRNAs in the virulence of the fungus.


Asunto(s)
Solanum lycopersicum , Interferencia de ARN , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Botrytis , ARN Mensajero/genética
11.
New Phytol ; 237(6): 2298-2315, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36539920

RESUMEN

Pathogenic fungi are subject to DNA damage stress derived from host immune responses during infection. Small ubiquitin-like modifier (SUMO) modification and precursor (pre)-mRNA splicing are both involved in DNA damage response (DDR). However, the mechanisms of how SUMOylation and splicing coordinated in DDR remain largely unknown. Combining with biochemical analysis, RNA-Seq method, and biological analysis, we report that SUMO pathway participates in DDR and virulence in Fusarium graminearum, a causal agent of Fusarium head blight of cereal crops world-wide. Interestingly, a key transcription factor FgSR is SUMOylated upon DNA damage stress. SUMOylation regulates FgSR nuclear-cytoplasmic partitioning and its phosphorylation by FgMec1, and promotes its interaction with chromatin remodeling complex SWI/SNF for activating the expression of DDR-related genes. Moreover, the SWI/SNF complex was found to further recruit splicing-related NineTeen Complex, subsequently modulates pre-mRNA splicing during DDR. Our findings reveal a novel function of SUMOylation in DDR by regulating a transcription factor to orchestrate gene expression and pre-mRNA splicing to overcome DNA damage during the infection of F. graminearum, which advances the understanding of the delicate regulation of DDR by SUMOylation in pathogenic fungi, and extends the knowledge of cooperation of SUMOylation and pre-mRNA splicing in DDR in eukaryotes.


Asunto(s)
Precursores del ARN , Sumoilación , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Daño del ADN
12.
Plant Physiol ; 191(1): 125-141, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222581

RESUMEN

According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.


Asunto(s)
Botrytis , Células Vegetales , Botrytis/metabolismo , Muerte Celular , Virulencia , Membrana Celular , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
13.
Pestic Biochem Physiol ; 188: 105253, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464359

RESUMEN

Fusarium graminearum is an important plant pathogen and the causal agent of Fusarium head blight (FHB). At present, the principal method of controlling FHB is through fungicides. Fluazinam is an agent with strong broad-spectrum antifungal activity and has been used to control many diseases. However, there are no reported uses of fluazinam for controlling FHB. This study reports the activity and cell toxicology mechanisms of fluazinam on the filamentous fungus F. graminearum and its effect on fungal growth and development. The activity of fluazinam was tested for 95 wild-type field strains of F. graminearum. The EC50 values (the 50% effective concentration) of fluazinam for inhibition of mycelial growth and spore germination ranged from 0.037 µg/ml to 0.179 µg/ml and from 0.039 µg/ml to 0.506 µg/ml, respectively. The fluazinam sensitivity of these strains varied in 4.9 and 13.0 folds, implying that the target of the fungicide remained unchanged. After treatment with 0.3 µg/ml (≈EC90) fluazinam, the production of conidia was reduced, and the cell wall and cell membrane had shrunked; the cell nucleus and septum morphology, cell membrane permeability, and sexual development were not affected. When treated with 0.1 µg/ml (≈EC50) or 0.3 µg/ml fluazinam, the mycelial respiration and deoxynivalenol (DON) synthesis of F. graminearum were decreased. Confocal images showed that the formation of toxisomes was disturbed after fluazinam treatment, suggesting that fluazinam reduces DON synthesis by inhibiting toxisome formation. Infection of wheat coleoptiles revealed that fluazinam had a strong protective activity against F. graminearum. At 250 µg/ml fluazinam the control efficacy of protective treatments reached 100% and controlled strains resistant to carbendazim. These results contribute to the understanding of the mode of action of fluazinam and its application.


Asunto(s)
Fungicidas Industriales , Fusarium , Aminopiridinas , Fungicidas Industriales/toxicidad
14.
Energy Technol (Weinh) ; 10(5): 2101120, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35859916

RESUMEN

Lithium-ion batteries and related battery concepts show an expansion and shrinkage ("breathing") of the electrodes during cell cycling. The dimensional changes of an individual electrode or a complete cell can be continuously measured by electrochemical dilatometry (ECD). The obtained data provides information on the electrode/cell reaction itself but can be also used to study side reactions or other relevant aspects, e.g., how the breathing is influenced by the electrode binder and porosity. The method spans over a wide measurement range and allows the determination of macroscopic as well as nanoscopic changes. It has also been applied to supercapacitors. The method has been developed already in the 1970s but recent advancements and the availability of commercial setups have led to an increasing interest in ECD. At the same time, there is no "best practice" on how to evaluate the data and several pitfalls exist that can complicate the comparison of literature data. This review highlights the recent development and future trends of ECD and its use in battery and supercapacitor research. A practical guide on how to evaluate the data is provided along with a discussion on various factors that influence the measurement results.

15.
New Phytol ; 235(2): 690-700, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35383933

RESUMEN

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are found throughout several plant-associated microbial taxa and are typically considered to possess cytolytic activity exclusively on dicot plant species. However, cytolytic NLPs are also produced by pathogens of monocot plants such as the onion (Allium cepa) pathogen Botrytis squamosa. We determined the cytotoxic activity of B. squamosa BsNep1, as well as other previously characterized NLPs, on various monocot plant species and assessed the plant plasma membrane components required for NLP sensitivity. Leaf infiltration of NLPs showed that onion cultivars are differentially sensitive to NLPs, and analysis of their sphingolipid content revealed that the GIPC series A : series B ratio did not correlate to NLP sensitivity. A tri-hybrid population derived from a cross between onion and two wild relatives showed variation in NLP sensitivity within the population. We identified a quantitative trait locus (QTL) for NLP insensitivity that colocalized with a previously identified QTL for B. squamosa resistance and the segregating trait of NLP insensitivity correlated with the sphingolipid content. Our results demonstrate the cytotoxic activity of NLPs on several monocot plant species and legitimize their presence in monocot-specific plant pathogens.


Asunto(s)
Plantas , Proteínas , Péptidos , Hojas de la Planta , Esfingolípidos
16.
PLoS Pathog ; 18(3): e1010367, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239739

RESUMEN

Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.


Asunto(s)
Botrytis , Nicotiana , Botrytis/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas , Nicotiana/genética , Nicotiana/microbiología , Virulencia/genética
17.
Acta Derm Venereol ; 101(9): adv00561, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34490467

RESUMEN

Removal of the deep fascia is recommended in therapy for dermatofibrosarcoma protuberans, but its necessity in the context of micrographic surgery is unclear. A retrospective clinicopathological analysis of 48 patients with dermatofibrosarcoma protuberans treated by micrographic surgery was performed, to determine in which tumours fascia preservation was feasible and safe. Histologically, 93% of tumours on the trunk and extremities and 14% of tumours in the head and neck region were fully located above the fascia. Localization on the head and neck was the only significant risk factor for tumour extension beyond the subcutis (p<0.001). Overall, 44% of tumours were completely excised above the fascia and 56% with deeper excisions. Two deeply infiltrating tumours (4%) on the head recurred, but in none of these lesions was the fascia spared. These results show that micrographic surgery allows fascia preservation in superficial tumours outside the head and neck region.


Asunto(s)
Dermatofibrosarcoma , Sarcoma , Neoplasias Cutáneas , Dermatofibrosarcoma/diagnóstico por imagen , Dermatofibrosarcoma/cirugía , Fascia , Humanos , Cirugía de Mohs/efectos adversos , Recurrencia Local de Neoplasia/cirugía , Estudios Retrospectivos , Neoplasias Cutáneas/cirugía
18.
Cancers (Basel) ; 13(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34359765

RESUMEN

BACKGROUND: PReferentially expressed Antigen in MElanoma (PRAME) immunohistochemistry is increasingly used as diagnostic adjunct in the evaluation of melanocytic tumors. The expression and prognostic significance of PRAME in melanomas ≤1.0 mm and its diagnostic utility in the distinction from severely dysplastic compound nevi (SDN) have not been studied. METHODS: We investigated and compared the immunohistochemical PRAME expression in 70 matched thin metastasizing and non-metastasizing melanomas and 45 nevi from patients with long-term follow-up (35 SDN and 10 unequivocally benign compound nevi). RESULTS: Diffuse PRAME staining in >75% of lesional epidermal and dermal melanocytes identified 58.6% of thin melanomas but did not distinguish metastasizing from non-metastasizing melanomas (p = 0.81). A superficial atypical melanocytic proliferation of uncertain significance, in which the final diagnostic interpretation favored a SDN was the only nevus with diffuse PRAME expression (1/45). Melanomas and SDN with PRAME immunoreactivity exhibited different staining patterns. Most melanomas (67.6%) showed uniform PRAME expression in the in situ and invasive component, whereas most SDN (81.0%) showed a decreasing gradient with depth. CONCLUSION: Diffuse intraepidermal and dermal PRAME staining is highly specific for melanomas in the distinction from SDN. PRAME expression is not a prognostic biomarker in melanomas ≤1.0 mm.

19.
Genome Biol ; 22(1): 225, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399815

RESUMEN

BACKGROUND: Retrotransposons are genetic elements inducing mutations in all domains of life. Despite their detrimental effect, retrotransposons can become temporarily active during epigenetic reprogramming and cellular stress response, which may accelerate host genome evolution. In fungal pathogens, a positive role has been attributed to retrotransposons when shaping genome architecture and expression of genes encoding pathogenicity factors; thus, retrotransposons are known to influence pathogenicity. RESULTS: We uncover a hitherto unknown role of fungal retrotransposons as being pathogenicity factors, themselves. The aggressive fungal plant pathogen, Botrytis cinerea, is known to deliver some long-terminal repeat (LTR) deriving regulatory trans-species small RNAs (BcsRNAs) into plant cells to suppress host gene expression for infection. We find that naturally occurring, less aggressive B. cinerea strains possess considerably lower copy numbers of LTR retrotransposons and had lost retrotransposon BcsRNA production. Using a transgenic proof-of-concept approach, we reconstitute retrotransposon expression in a BcsRNA-lacking B. cinerea strain, which results in enhanced aggressiveness in a retrotransposon and BcsRNA expression-dependent manner. Moreover, retrotransposon expression in B. cinerea leads to suppression of plant defence-related genes during infection. CONCLUSIONS: We propose that retrotransposons are pathogenicity factors that manipulate host plant gene expression by encoding trans-species BcsRNAs. Taken together, the novelty that retrotransposons are pathogenicity factors will have a broad impact on studies of host-microbe interactions and pathology.


Asunto(s)
Botrytis/genética , Plantas/genética , Retroelementos , Factores de Virulencia , Proteínas Fúngicas/genética , Expresión Génica , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Plantas/microbiología , RNA-Seq , Secuencias Repetidas Terminales , Secuenciación Completa del Genoma
20.
Plant Dis ; 105(12): 4132-4137, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34110229

RESUMEN

The ectoparasitic nematode Xiphinema index transmits grapevine fanleaf virus (GFLV) during feeding on grapevine roots, causing fanleaf degeneration in the plant. Hence, resistance breeding is a key to develop novel rootstocks to overcome such threats. In past years, various grapevine species were screened, and a few candidates with partial resistance were identified. However, they were hardly sufficient for viticulture because of their many agronomical defects. To develop reliably resistant rootstocks applicable in viticulture, multiple Vitis spp. genotypes were analyzed using root inoculation with nematodes in glass vials as an early and easy evaluation test. Resistance levels were evaluated 35 days after inoculation based on nematode reproduction factors, focusing on juveniles and eggs. Infection of grapevines with GFLV was analyzed after inoculation with viruliferous X. index. With this fast screening system, putative candidates with resistances against X. index have been identified for future breeding programs. Particularly, genotypes with the genetic background of Vitis aestivalis and Vitis labrusca were found to be nematode-resistant.


Asunto(s)
Nematodos , Vitis , Animales , Antecedentes Genéticos , Genotipo , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA