RESUMEN
BACKGROUND: Inflammasomes recognize endogenous and exogenous danger signals, and subsequently induce the secretion of IL-1ß. Studying inflammasomes in the red fox (Vulpes vulpes) is crucial for wildlife veterinary medicine, as it can help control inflammatory diseases in foxes. METHODS: We investigated the activation and intracellular mechanisms of three inflammasomes (NLRP3, AIM2, and NLRC4) in fox peripheral blood mononuclear cells (PBMCs), using established triggers and inhibitors derived from humans and mice. RESULTS: Fox PBMCs exhibited normal activation and induction of IL-1ß secretion in response to representative inflammasome triggers (ATP and nigericin for NLRP3, dsDNA for AIM2, flagellin for NLRC4). Additionally, PBMCs showed normal IL-1ß secretion when inoculated with inflammasome-activating bacteria. In inhibitors of the inflammasome signaling pathway, fox inflammasome activation was compared with mouse inflammasomes. MCC950, a selective NLRP3 inhibitor, suppressed the secretion of dsDNA- and flagellin-mediated IL-1ß in foxes, unlike mice. CONCLUSIONS: These findings suggest that NLRP3 may have a common role in dsDNA- and flagellin-mediated inflammasome activation in the red fox. It implies that this fox inflammasome biology can be applied to the treatment of inflammasome-mediated diseases in the red fox.
RESUMEN
Zika virus infection causes multiple clinical issues, including Guillain-Barré syndrome and neonatal malformation. Vaccination is considered as the only strategy for the prevention of ZIKV-induced clinical issues. This study developed a plant-based recombinant vaccine that transiently expressed the ZIKV envelope protein (ZikaEnv:aghFc) in Nicotiana benthamiana and evaluated the protective immunity afforded by it in immunocompetent mice. ZikaEnv:aghFc induced both humoral and cellular immunity at a low dose (1-5 µg). This immune-inducing potential was enhanced further when adjuvanted CIA09A. In addition, antigen-specific antibodies and neutralizing antibodies were vertically transferred from immunized females to their progeny and afforded both protective immunity to ZIKV and cross-protection to Dengue virus infection. These results suggest that our plant-based ZIKV vaccine provides a safe and efficient protective strategy with a competitive edge.
Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Femenino , Animales , Ratones , Proteínas del Envoltorio Viral/genética , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
The pathogenic porcine circovirus type 2 (PCV2) leads to significant economic losses in pig production. PCV2d is currently the dominant genotype causing porcine circovirus-associated disease (PCVAD) worldwide. Therefore, development of a recombinant PCV2d-based vaccine is required to elicit complete protection against PCV2d infection. In this study, we generated virus-like particles of PCV2d-based capsid protein (Bac-2dCP) using a baculovirus expression system and evaluated its protective efficacy against PCV2d infection in specific pathogen-free (SPF) pigs. Three-week-old SPF miniature pigs were intramuscularly immunized with purified Bac-2dCP and intranasally challenged with PCV2d at 4 weeks post-vaccination. The Bac-2dCP group showed significantly higher IgG levels and neutralizing antibodies against PCV2b and PCV2d genotypes, as well as increased interferon-γ levels, and increased body weight and average daily weight gain compared with positive (challenged) and negative (unchallenged) controls. In particular, the Bac-2dCP group showed almost complete absence of PCV2d DNA in serum, nasal, and rectal swabs and in lung, lymph node, and kidney tissue samples. However, the positive control group exhibited low levels of neutralizing antibody, and high levels of PCV2 DNA in serum, swab, and tissue samples, resulting in PCV2-associated pathological lesions. The results of this study demonstrated that a recombinant Bac-2dCP vaccine conferred complete protection against a PCV2d challenge in SPF miniature pigs.
RESUMEN
BACKGROUND: Zika virus (ZIKV) is a mosquito-borne flavivirus classified in Flaviviridae family such as dengue (DENV), yellow fever, and West Nile virus. An outbreak of ZIKV infection can pose a major public health risk because the contagion is unpredictable and induces severe pathology such as Guillan-Barre syndrome and neonatal microcephaly. However, an authorized ZIKV vaccine is not yet available, while several vaccine candidates are under development. METHODS: In this study, we constructed a recombinant ZIKV vaccine (Z_EDIII) that includes ZIKV envelope protein domain III using E. coli expression system. Then both humoral and cellular immunity were examined in C57BL/6 (female, 8-weeks-old) mice via Indirect ELISA assay, PRNT, ELISpot and cytokine detection for IFN-γ, TNF-α, and IL-12. In addition, the cross protection against DENV was evaluated in pups from Z_EDIII vaccinated and infected dam. RESULTS: Mice immunized by Z_EDIII produced a significant amount of ZIKV EDIII-specific and neutralizing antibodies. Together with antibodies, effector cytokines, such as IFN-γ, TNF-α, and IL-12 were induced. Moreover, vaccinated females delivered the adaptive immunity to neonates who are protective against ZIKV and DENV challenge. CONCLUSIONS: This study observed Z-EDIII-induced humoral and cellular immunity that protected hosts from both ZIKV and DENV challenges. The result suggests that our ZIKV EDIII recombinant vaccine has potential to provide a new preventive strategy against ZIKV infection.
RESUMEN
Non-typhoidal Salmonella (NTS) is one of the primary causes of foodborne gastroenteritis; occasionally, it causes invasive infection in humans. Because of its broad host range, covering diverse livestock species, foods of animal origin pose a critical threat of NTS contamination. However, there is currently no licensed vaccine against NTS infection. FruR, also known as Cra (catabolite repressor/activator), was initially identified as the transcriptional repressor of the fructose (fru) operon, and then found to activate or repress the transcription of many different genes associated with carbon and energy metabolism. In view of its role as a global regulator, we constructed a live attenuated vaccine candidate, ΔfruR, and evaluated its prophylactic effect against NTS infection in mice. A Salmonella Typhimurium mutant strain lacking fruR was defective in survival inside macrophages and exhibited attenuated virulence in infected mice. Immunization with the ΔfruR mutant stimulated the production of antibodies, including the IgG, IgM, and IgG subclasses, and afforded a protection of 100% to mice against the challenge of lethal infection with a virulent Salmonella strain. The prophylactic effect obtained after ΔfruR immunization was also validated by the absence of signs of hepatosplenomegaly, as these mice had comparable liver and spleen weights in comparison with healthy mice. These results suggest that the ΔfruR mutant strain can be further exploited as a promising vaccine candidate against Salmonella lethal infection.
RESUMEN
Zika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain-Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.
Asunto(s)
Baculoviridae/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunocompetencia/inmunología , Vacunas Sintéticas , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/fisiología , Vacunas Virales/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Animales , Masculino , Ratones Endogámicos C57BLRESUMEN
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Asunto(s)
Enfermedades de los Roedores , Salmonelosis Animal , Infecciones por Salmonella , Vacunas contra la Salmonella , Animales , Pollos , Ratones , Aves de Corral , Salmonelosis Animal/prevención & control , Salmonella typhimurium/genética , Vacunas AtenuadasRESUMEN
INTRODUCTION: The pathogenic porcine circovirus type 2 (PCV2) causes significant economic losses in pig production. Emergence of the PCV2d genotype has been linked with PCV2-associated disease (PCVAD) outbreaks. However, no study has been conducted efficacy of an experimental PCV2d-based subunit vaccine in pigs. Therefore, PCV2b- and PCV2d-based capsid (CP) proteins were generated using a baculovirus (Bac) expression system, and we evaluated the protective immune responses in a commercial pig farm where predominant PCV2d is circulating. METHODS: Eighteen 3-week-old pigs with maternal antibodies were randomly divided into four groups, and were immunized with purified Bac-2dCP, mixed 1:1 ratio with purified Bac-2bCP and Bac-2dCP (Bac-mCP), a commercial PCV2a-based subunit vaccine (VAC) or phosphate-buffered saline (PBS) as controls. RESULTS: The Bac-2dCP and Bac-mCP groups had significantly higher PCV2b- or PCV2d- specific IgG and neutralizing antibody without interference by maternal antibody compared to control group in pigs naturally infected with PCV2d. Interestingly, not only serum IL-4 level was significantly increased in the Bac-2dCP group, but also PCV2d viremia level was significantly reduced than the control group. CONCLUSIONS: The recombinant Bac-2dCP subunit vaccine is a good candidate for the effective reduction against PCV2d infection.
Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Porcinos , Enfermedades de los Porcinos/prevención & controlRESUMEN
A cold-adapted porcine reproductive and respiratory syndrome virus (CA-VR2332) was generated from the modified live virus strain VR2332. CA-VR2332 showed impaired growth when cultured at 37°C with numerous mutations (S731F, E819D, G975E, and D1014N) in the hypervariable region of the NSP2, in which the mutation S731F might play a vital role in viral replication at 30°C. Conserved amino acid sequences of the GP5 protein suggests that CA-VR2332 is a promising candidate for producing an effective vaccine against PRRSV infection. Further studies on replication and immunogenicity in vivo are required to evaluate the properties of CA-VR2332.
Asunto(s)
Mutación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética , Adaptación Fisiológica , Secuencia de Aminoácidos , Frío , Alineación de Secuencia/veterinaria , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismoRESUMEN
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimuriuminfected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPCtreated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.
Asunto(s)
Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , FN-kappa B/metabolismo , Fagosomas/metabolismo , Infecciones por Salmonella/metabolismo , Transducción de Señal , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiologíaRESUMEN
The swine pathogen porcine circovirus type 2 (PCV2) causes significant economic damage worldwide. The PCV2 capsid (CP) residues 169-STIDYFQPNNKR-180 have been identified as a decoy epitope that diverts the host immune response away from protective epitopes. However, the decoy epitope may include important linear or conformational protective epitopes against PCV2. In this study, we used the baculovirus system to express recombinant complete CP (1-233) and mutant CP (Δ169-180), in which the decoy epitope was deleted, and evaluated the immune response to these in mice. Immunization with mutant CP (Δ169-180) protein, which formed very low level of virus-like particles (VLPs), elicited significantly lower levels of PCV2 CP-specific IgG antibodies and a slightly lower neutralizing activity than immunization with the complete CP (1-233) protein. This finding suggests that the complete CP is important for efficient VLP assembly and induction of PCV2-specific IgG antibodies and neutralizing antibodies in mice. This study may provide useful information for next-generation vaccine design for PCV2 control.
Asunto(s)
Proteínas de la Cápside/inmunología , Circovirus/inmunología , Epítopos/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/genética , Circovirus/genética , Epítopos/biosíntesis , Epítopos/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Síndrome Multisistémico de Emaciación Posdestete Porcino/inmunología , Síndrome Multisistémico de Emaciación Posdestete Porcino/prevención & control , Porcinos , Vacunación , Vacunas de Partículas Similares a Virus/genéticaRESUMEN
Phagocytosis is an essential mechanism in innate immune defense, and in maintaining homeostasis to eliminate apoptotic cells or microbes, such as Mycobacterium tuberculosis, Salmonella enterica, Streptococcus pyogenes and Legionella pneumophila. After internalizing microbial pathogens via phagocytosis, phagosomes undergo a series of 'maturation' steps, to form an increasingly acidified compartment and subsequently fuse with the lysosome to develop into phagolysosomes and effectively eliminate the invading pathogens. Through this mechanism, phagocytes, including macrophages, neutrophils and dendritic cells, are involved in the processing of microbial pathogens and antigen presentation to T cells to initiate adaptive immune responses. Therefore, phagocytosis plays a role in the bridge between innate and adaptive immunity. However, intracellular bacteria have evolved diverse strategies to survive and replicate within hosts. In this review, we describe the sequential stages in the phagocytosis process. We also discuss the immune evasion strategies used by pathogens to regulate phagosome maturation during intracellular bacterial infection, and indicate that these might be used for the development of potential therapeutic strategies for infectious diseases.
RESUMEN
Autophagy is a lysosomal self-digestion pathway that maintains internal homeostasis inside cells and critical process by which the innate immune system eliminates intracellular bacteria. In this study, we showed that stimulation of toll-like receptor 7 (TLR7) with imiquimod (IMQ) triggered autophagic cell death in macrophages by enhancing the generation of reactive oxygen species (ROS) via the p38- or MEK/ERK1/2-mediated signaling pathway in the early phase. IMQ significantly increased mitochondrial ROS and targeted autophagosomes to the mitochondria. Stimulation of TLR7 with IMQ enhanced the expression of BNIP3, which was localized to mitochondria and interacted with beclin-1, leading to mitophagy. In addition, IMQ substantially induced NO production through the GSK-3ß-mediated signaling pathway, which led to autophagy in the late stage. We further examined whether the induction of autophagy by IMQ effectively eliminated intracellular microbes. Macrophages were infected with a virulent Mycobacterium tuberculosis (Mtb) strain, H37Rv, and then treated with IMQ. IMQ suppressed intracellular Mtb growth by inducing autophagy in a dose-dependent manner and increased NO production. Inhibition of autophagy using 3-methyladenine (3-MA) prevented autophagosome formation and control of intracellular Mtb growth in macrophages. These findings revealed a novel mechanism by which IMQ induces selective autophagy to promote intracellular killing machinery against Mtb infection in macrophages.
RESUMEN
Non-typhoidal Salmonella (NTS) causes gastrointestinal infection, which is commonly self-limiting in healthy humans but may lead to invasive infection at extraintestinal sites, leading to bacteremia and focal systemic infections in the immunocompromised. However, a prophylactic vaccine against invasive NTS has not yet been developed. In this work, we explored the potential of a ΔyjeK mutant strain as a live attenuated vaccine against invasive NTS infection. YjeK in combination with YjeA is required for the post-translational modification of elongation factor P (EF-P), which is critical for bacterial protein synthesis. Therefore, malfunction of YjeK and YjeA-mediated EF-P activation might extensively influence protein expression during Salmonella infection. Salmonella lacking YjeK showed substantial alterations in bacterial motility, antibiotics resistance, and virulence. Interestingly, deletion of the yjeK gene increased the expression levels of Salmonella pathogenicity island (SPI)-1 genes but decreased the transcription levels of SPI-2 genes, thereby influencing bacterial invasion and survival abilities in contact with host cells. In a mouse model, the ΔyjeK mutant strain alleviated the levels of splenomegaly and bacterial burdens in the spleen and liver in comparison with the wild-type strain. However, mice immunized with the ΔyjeK mutant displayed increased Th1- and Th2-mediated immune responses at 28 days post-infection, promoting cytokines and antibodies production. Notably, the Th2-associated antibody response was highly induced by administration of the ΔyjeK mutant strain. Consequently, vaccination with the ΔyjeK mutant strain protected 100% of the mice against challenge with lethal invasive Salmonella and significantly relieved bacterial burdens in the organs. Collectively, these results suggest that the ΔyjeK mutant strain can be exploited as a promising live attenuated NTS vaccine.
Asunto(s)
Proteínas Bacterianas , Infecciones por Salmonella/prevención & control , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Animales , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Vacunas Atenuadas/inmunologíaRESUMEN
Actinobacillus pleuropneumoniae (APP) is a causative agent of porcine pleuropneumonia. Therefore, the development of an effective vaccine for APP is necessary. Here, we optimized the culture medium and conditions to enhance the production yields of Apx toxins in APP serotype 1, 2, and 5 cultures. The use of Mycoplasma Broth Base (PPLO) medium improved both the quantity and quality of the harvested Apx toxins compared with Columbia Broth medium. Calcium chloride (CaCl2) was first demonstrated as a stimulation factor for the production of Apx toxins in APP serotype 2 cultures. Cultivation of APP serotype 2 in PPLO medium supplemented with 10 µg/ml of nicotinamide adenine dinucleotide (NAD) and 20 mM CaCl2 yielded the highest levels of Apx toxins. These findings suggest that the optimization of the culture medium and conditions increases the concentration of Apx toxins in the supernatants of APP serotype 1, 2, and 5 cultures and may be applied for the development of vaccines against APP infection.
Asunto(s)
Actinobacillus pleuropneumoniae/metabolismo , Toxinas Bacterianas/biosíntesis , Medios de Cultivo/química , Infecciones por Actinobacillus/prevención & control , Actinobacillus pleuropneumoniae/crecimiento & desarrollo , Actinobacillus pleuropneumoniae/inmunología , Animales , Vacunas Bacterianas/inmunología , Cloruro de Calcio/metabolismo , Serogrupo , Porcinos , Enfermedades de los Porcinos/prevención & controlRESUMEN
Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.
Asunto(s)
Actinobacillus pleuropneumoniae/fisiología , Eliminación de Gen , Genes Bacterianos , Infecciones por Actinobacillus/microbiología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Serogrupo , VacunaciónRESUMEN
Porcine epidemic diarrhea virus (PEDV) targets the intestinal mucosa in pigs. To protect against PEDV invasion, a mucosal vaccine is utilized effectively. In this study, we generated a recombinant adenovirus vaccine encoding the heat-labile enterotoxin B (LTB) and the core neutralizing epitope (COE) of PEDV (rAd-LTB-COE). The fusion protein LTB-COE was successfully expressed by the recombinant adenovirus in HEK293 cells, and the immunogenicity of the vaccine candidate was assessed in BALB/c mice and piglets. Three intramuscular or oral vaccinations with rAd-LTB-COE at two-week intervals induced robust humoral and mucosal immune responses. Moreover, a cell-mediated immune response was promoted in immunized mice, and the neutralizing antibody inhibited both the vaccine strain and the emerging PEDV isolate. Immunization experiments in piglets revealed that rAd-LTB-COE was immunogenic and induced good immune responses in piglets. Further studies are required to evaluate the efficacy of rAd-LTB-COE against a highly virulent PEDV challenge.
Asunto(s)
Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Línea Celular , Infecciones por Coronavirus/inmunología , Enterotoxinas/genética , Enterotoxinas/inmunología , Epítopos/genética , Epítopos/inmunología , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Virus de la Diarrea Epidémica Porcina/genética , Proteínas Recombinantes de Fusión/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/uso terapéuticoRESUMEN
Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.
Asunto(s)
Farmacorresistencia Bacteriana , Genoma Bacteriano/genética , Aves de Corral , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Mataderos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Supervivencia Celular , Farmacorresistencia Bacteriana/genética , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Filogenia , Plásmidos/genética , Profagos/genética , República de Corea , Salmonella typhimurium/clasificación , Salmonella typhimurium/aislamiento & purificación , Serogrupo , Porcinos , Virulencia/genéticaRESUMEN
Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease, which is characterized by systemic wasting syndrome, including respiratory problems worldwide. Most commercial PCV2 vaccines are derived from recombinant capsid protein or inactivated whole-virus. We compared average daily weight gain, interferon-γ, and neutralizing antibody levels of a recombinant protein vaccine and an inactivated whole-virus vaccine in a pilot study. Both PCV2 vaccines showed similar effect on immunity against PCV2 and a better average daily weight gain was found in both vaccinated groups compared to non-vaccinated animals.
Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/clasificación , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/virología , Interferón gamma/metabolismo , Proyectos Piloto , Porcinos , Enfermedades de los Porcinos/virología , Vacunación , Vacunas de Productos Inactivados/inmunología , Vacunas SintéticasRESUMEN
Sequence type (ST) 33 of Shiga toxin-producing Escherichia coli (STEC) strain O91:H14 has been proposed as a potential domestic clone of STEC in Korea because of its high prevalence among human patients with mild diarrhea or asymptomatic carriers. Herein, the clonal diversity of 17 STEC O91:H14 isolates of ST33 during 2003 to 2014 was analyzed by pulsed-field gel electrophoresis, including 14 isolates from human patients and 3 from retail meats. Their virulence characteristics, acid resistance, and antimicrobial susceptibility were also determined. Our results showed that all isolates were clustered mainly into three different pulsotypes and were likely low pathogenic without antimicrobial resistance.