Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39437447

RESUMEN

Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements manifested in plasma lipidomic profiles, obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 years, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, while ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress (PSQ30 questionnaire), which was however, associated with BMI in men, but not in women. None of the lipid species or classes showed a similar "age X sex X BMI" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with BMI and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.

2.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39409049

RESUMEN

The inhibitor-kappaB kinase epsilon (IKKε) represents a non-canonical IκB kinase that modulates NF-κB activity and interferon I responses. Inhibition of this pathway has been linked with atherosclerosis and metabolic dysfunction-associated steatotic liver disease (MASLD), yet the results are contradictory. In this study, we employed a combined model of hepatic PCSK9D377Y overexpression and a high-fat diet for 16 weeks to induce atherosclerosis and liver steatosis. The development of atherosclerotic plaques, serum lipid concentrations, and lipid metabolism in the liver and adipose tissue were compared between wild-type and IKKε knock-out mice. The formation and progression of plaques were markedly reduced in IKKε knockout mice, accompanied by reduced serum cholesterol levels, fat deposition, and macrophage infiltration within the plaque. Additionally, the development of a fatty liver was diminished in these mice, which may be attributed to decreased levels of multiple lipid species, particularly monounsaturated fatty acids, triglycerides, and ceramides in the serum. The modulation of several proteins within the liver and adipose tissue suggests that de novo lipogenesis and the inflammatory response are suppressed as a consequence of IKKε inhibition. In conclusion, our data suggest that the knockout of IKKε is involved in mechanisms of both atherosclerosis and MASLD. Inhibition of this pathway may therefore represent a novel approach to the treatment of cardiovascular and metabolic diseases.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hígado Graso , Quinasa I-kappa B , Metabolismo de los Lípidos , Ratones Noqueados , Proproteína Convertasa 9 , Animales , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/genética , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
3.
Elife ; 132024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347767

RESUMEN

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy. Methods: High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy. Results: Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy. Conclusions: Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects. Funding: This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).


Asunto(s)
Aprendizaje Automático , Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Esfingolípidos , Paclitaxel/efectos adversos , Humanos , Esfingolípidos/metabolismo , Esfingolípidos/sangre , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Lipidómica , Persona de Mediana Edad , Antineoplásicos Fitogénicos/efectos adversos , Anciano
4.
iScience ; 27(8): 110552, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39171292

RESUMEN

Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication. Here, we analyzed the lipid secretome of capsaicin-stimulated nociceptive neurons with LC-HRMS, revealing that oleic acid is strongly released from sensory neurons by capsaicin. We further demonstrated that oleic acid inhibits capsaicin-induced calcium transients in sensory neurons and reverses bradykinin-induced TRPV1 sensitization by a calcineurin (CaN) and GPR40 (FFAR1) dependent pathway. Additionally, oleic acid alleviated zymosan-mediated thermal hypersensitivity via the GPR40, suggesting that the capsaicin-mediated oleic acid release from sensory neurons acts as a protective and feedback mechanism, preventing sensory neurons from nociceptive overstimulation via the GPR40/CaN/TRPV1-axis.

5.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727269

RESUMEN

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inflamación , Lisofosfatidilcolinas , Ratones Endogámicos C57BL , Neuronas , Ácido Valproico , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Ratones , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Lisofosfatidilcolinas/sangre , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
6.
Clin Chim Acta ; 557: 117858, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492658

RESUMEN

BACKGROUND AND AIMS: In lipidomic and metabolomic studies, pre-analytical pitfalls enhance the risk of misusing resources such as time and money, as samples that are analyzed may not yield accurate or reliable data due to poor sample handling. Guidance and pre-analytic know-how are necessary for translation of omics technologies into routine clinical testing. The present work aims to enable decision making regarding sample stability in every phase of lipidomics- and metabolomics-centered studies. MATERIALS AND METHODS: Data of multiple pre-analytic studies were aggregated into a database. Flexible approaches for evaluating these data were implemented in an RShiny-based web-application, tailored towards broad applicability in clinical and bioanalytic research. RESULTS: Our "Application for lipid stability evaluation & research" - ALISTER facilitates decision making on blood sample stability during lipidomic and metabolomic studies, such as biomarker research, analysis of biobank samples and clinical testing. The interactive tool gives sampling recommendations when planning sample collection or aids in the assessment of sample quality of experiments retrospectively. CONCLUSION: ALISTER is available for use under https://itmp.shinyapps.io/alister/. The application enables and simplifies data-driven decision making concerning pre-analytic blood sample handling and fits the needs of clinical investigations from multiple perspectives.


Asunto(s)
Metabolómica , Manejo de Especímenes , Humanos , Estudios Retrospectivos , Programas Informáticos , Lípidos
7.
Sci Rep ; 13(1): 22710, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38123604

RESUMEN

Psoriatic arthritis (PsA) is a chronic inflammatory systemic disease whose activity is often assessed using the Disease Activity Score 28 (DAS28-CRP). The present study was designed to investigate the significance of individual components within the score for PsA activity. A cohort of 80 PsA patients (44 women and 36 men, aged 56.3 ± 12 years) with a range of disease activity from remission to moderate was analyzed using unsupervised and supervised methods applied to the DAS28-CRP components. Machine learning-based permutation importance identified tenderness in the metacarpophalangeal joint of the right index finger as the most informative item of the DAS28-CRP for PsA activity staging. This symptom alone allowed a machine learned (random forests) classifier to identify PsA remission with 67% balanced accuracy in new cases. Projection of the DAS28-CRP data onto an emergent self-organizing map of artificial neurons identified outliers, which following augmentation of group sizes by emergent self-organizing maps based generative artificial intelligence (AI) could be defined as subgroups particularly characterized by either tenderness or swelling of specific joints. AI-assisted re-evaluation of the DAS28-CRP for PsA has narrowed the score items to a most relevant symptom, and generative AI has been useful for identifying and characterizing small subgroups of patients whose symptom patterns differ from the majority. These findings represent an important step toward precision medicine that can address outliers.


Asunto(s)
Artritis Psoriásica , Masculino , Humanos , Femenino , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/tratamiento farmacológico , Inteligencia Artificial , Algoritmos , Articulación Metacarpofalángica , Aprendizaje Automático
8.
Ther Adv Musculoskelet Dis ; 15: 1759720X231192315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694182

RESUMEN

Achieving a good outcome for a person with Psoriatic Arthritis (PsA) is made difficult by late diagnosis, heterogenous clinical disease expression and in many cases, failure to adequately suppress inflammatory disease features. Single-centre studies have certainly contributed to our understanding of disease pathogenesis, but to adequately address the major areas of unmet need, multi-partner, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient-representative organizations. In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for better short-term and long-term outcomes.


Improving outcomes in Psoriatic Arthritis Psoriatic Arthritis (PsA) is a form of arthritis which is found in approximately 30% of people who have the skin condition, Psoriasis. Frequently debilitating and progressive, achieving a good outcome for a person with PsA is made difficult by late diagnosis, disease clinical features and in many cases, failure to adequately control features of inflammation. Research studies from individual centres have certainly contributed to our understanding of why people develop PsA but to adequately address the major areas of unmet need, multi-centre, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient representative organisations (see appendix). In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. The participation of patient research partners in all stages of the work of HIPPOCRATES is highlighted. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for improvements in short-term and long-term outcomes.

9.
Cell Biosci ; 13(1): 155, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635256

RESUMEN

BACKGROUND: Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS: ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION: The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37573716

RESUMEN

We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.


Asunto(s)
Monoacilglicerol Lipasas , Neoplasias , Ratones , Animales , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Microambiente Tumoral , Ácidos Grasos , Ratones Endogámicos C57BL
11.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373497

RESUMEN

Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the leading causes of liver disease worldwide. To identify disease-specific pathomechanisms, we analyzed the lipidome, metabolome and immune cell recruitment in livers in both diseases. Mice harboring ASH or NASH had comparable disease severities regarding mortality rate, neurological behavior, expression of fibrosis marker and albumin levels. Lipid droplet size was higher in NASH than ASH and qualitative differences in the lipidome were mainly based on incorporation of diet-specific fatty acids into triglycerides, phosphatidylcholines and lysophosphatidylcholines. Metabolomic analysis showed downregulated nucleoside levels in both models. Here, the corresponding uremic metabolites were only upregulated in NASH suggesting stronger cellular senescence, which was supported by lower antioxidant levels in NASH as compared to ASH. While altered urea cycle metabolites suggest increased nitric oxide synthesis in both models, in ASH, this depended on increased L-homoarginine levels indicating a cardiovascular response mechanism. Interestingly, only in NASH were the levels of tryptophan and its anti-inflammatory metabolite kynurenine upregulated. Fittingly, high-content immunohistochemistry showed a decreased macrophage recruitment and an increased polarization towards M2-like macrophages in NASH. In conclusion, with comparable disease severity in both models, higher lipid storage, oxidative stress and tryptophan/kynurenine levels were seen in NASH, leading to distinct immune responses.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipidómica , Quinurenina/metabolismo , Triptófano/metabolismo , Hígado/metabolismo , Metabolómica , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad
12.
J Neuroinflammation ; 20(1): 149, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355700

RESUMEN

BACKGROUND: Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS: In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS: Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS: In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.


Asunto(s)
Neuralgia , Paclitaxel , Ratones , Animales , Paclitaxel/toxicidad , Enfermedades Neuroinflamatorias , Gliosis/inducido químicamente , Gliosis/tratamiento farmacológico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Lípidos/efectos adversos
13.
Metabolites ; 13(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37110163

RESUMEN

Lipids are biomolecules involved in numerous (patho-)physiological processes and their elucidation in tissue samples is of particular interest. However, tissue analysis goes hand in hand with many challenges and the influence of pre-analytical factors can intensively change lipid concentrations ex vivo, compromising the results of the whole research project. Here, we study the influence of pre-analytical factors on lipid profiles during the processing of homogenized tissues. Homogenates from four different mice tissues (liver, kidney, heart, spleen) were stored at room temperature as well as in ice water for up to 120 min and analyzed via ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Lipid class ratios were calculated since their suitability as indicators for sample stability has been previously illustrated. Only approx. 40% of lipid class ratios were unchanged after 35 min, which was further reduced to 25% after 120 min during storage at room temperature. In contrast, lipids in tissue homogenates were generally stable when samples were kept in ice water, as more than 90% of investigated lipid class ratios remained unchanged after 35 min. Ultimately, swift processing of tissue homogenates under cooled conditions represents a viable option for lipid analysis and pre-analytical factors require more attention to achieve reliable results.

14.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430751

RESUMEN

Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.


Asunto(s)
Neuralgia , Traumatismos del Sistema Nervioso , Ratones , Animales , Neuralgia/metabolismo , Ceramidas , Analgésicos/farmacología , Analgésicos/uso terapéutico
15.
Biomedicines ; 10(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36289648

RESUMEN

The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients.

16.
J Pers Med ; 12(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35743709

RESUMEN

Immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and psoriasis (Ps), represent autoinflammatory and autoimmune disorders, as well as conditions that have an overlap of both categories. Understanding the underlying pathogeneses, making diagnoses, and choosing individualized treatments remain challenging due to heterogeneous disease phenotypes and the lack of reliable biomarkers that drive the treatment choice. In this review, we provide an overview of the low-molecular-weight metabolites that might be employed as biomarkers for various applications, e.g., early diagnosis, disease activity monitoring, and treatment-response prediction, in RA, PsA, and Ps. The literature was evaluated, and putative biomarkers in different matrices were identified, categorized, and summarized. While some of these candidate biomarkers appeared to be disease-specific, others were shared across multiple IMIDs, indicating common underlying disease mechanisms. However, there is still a long way to go for their application in a routine clinical setting. We propose that studies integrating omics analyses of large patient cohorts from different IMIDs should be performed to further elucidate their pathomechanisms and treatment options. This could lead to the identification and validation of biomarkers that might be applied in the context of precision medicine to improve the clinical outcomes of these IMID patients.

17.
Biomedicines ; 10(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35453664

RESUMEN

Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology.

18.
Diabetes ; 71(4): 774-787, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061031

RESUMEN

G-protein-coupled receptor 40 (GPR40) is a promising target to support glucose-induced insulin release in patients with type 2 diabetes. We studied the role of GPR40 in the regulation of blood-nerve barrier integrity and its involvement in diabetes-induced neuropathies. Because GPR40 modulates insulin release, we used the streptozotocin model for type 1 diabetes, in which GPR40 functions can be investigated independently of its effects on insulin release. Diabetic wild-type mice exhibited increased vascular endothelial permeability and showed epineural microlesions in sciatic nerves, which were also observed in naïve GPR40-/- mice. Fittingly, expression of vascular endothelial growth factor-A (VEGF-A), an inducer of vascular permeability, was increased in diabetic wild-type and naïve GPR40-/- mice. GPR40 antagonists increased VEGF-A expression in murine and human endothelial cells as well as permeability of transendothelial barriers. In contrast, GPR40 agonists suppressed VEGF-A release and mRNA expression. The VEGF receptor inhibitor axitinib prevented diabetes-induced hypersensitivities and reduced endothelial and epineural permeability. Importantly, the GPR40 agonist GW9508 reverted established diabetes-induced hypersensitivity, an effect that was blocked by VEGF-A administration. Thus, GPR40 activation suppresses VEGF-A expression, thereby reducing diabetes-induced blood-nerve barrier permeability and reverting diabetes-induced hypersensitivities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Hipersensibilidad , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Neuropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Humanos , Insulina/metabolismo , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
19.
Nutrients ; 13(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34836380

RESUMEN

Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.


Asunto(s)
Antígenos CD36/metabolismo , Grasas de la Dieta , Preferencias Alimentarias/fisiología , Progranulinas/metabolismo , Papilas Gustativas/metabolismo , Gusto/fisiología , Aumento de Peso , Animales , Femenino , Lípidos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Leche/química , Obesidad/etiología , Obesidad/metabolismo , Receptores Depuradores/metabolismo , Percepción del Gusto
20.
CPT Pharmacometrics Syst Pharmacol ; 10(11): 1371-1381, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34598320

RESUMEN

The evaluation of pharmacological data using machine learning requires high data quality. Therefore, data preprocessing, that is, cleaning analytical laboratory errors, replacing missing values or outliers, and transforming data adequately before actual data analysis, is crucial. Because current tools available for this purpose often require programming skills, preprocessing tools with graphical user interfaces that can be used interactively are needed. In collaboration between data scientists and experts in bioanalytical diagnostics, a graphical software package for data preprocessing called pguIMP is proposed, which contains a fixed sequence of preprocessing steps to enable reproducible interactive data preprocessing. As an R-based package, it also allows direct integration into this data science environment without requiring any programming knowledge. The implementation of contemporary data processing methods, including machine-learning-based imputation techniques, ensures the generation of corrected and cleaned bioanalytical data sets that preserve data structures such as clusters better than is possible with classical methods. This was evaluated on bioanalytical data sets from lipidomics and drug research using k-nearest-neighbors-based imputation followed by k-means clustering and density-based spatial clustering of applications with noise. The R package provides a Shiny-based web interface designed to be easy to use for non-data analysis experts. It is demonstrated that the spectrum of methods provided is suitable as a standard pipeline for preprocessing bioanalytical data in biomedical research domains. The R package pguIMP is freely available at the comprehensive R archive network (https://cran.r-project.org/web/packages/pguIMP/index.html).


Asunto(s)
Exactitud de los Datos , Programas Informáticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...