Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Mol Cell Proteomics ; : 100809, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936775

RESUMEN

Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C-terminus. We determined that the N-terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g. NUDC, TIMM50). Whereas, the C-terminus interacts with immune signaling proteins in an LPS-induced inflammatory response (e.g. STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g. ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.

2.
World J Pediatr Congenit Heart Surg ; 15(3): 287-297, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38263638

RESUMEN

BACKGROUND: This article aims to demonstrate the morphology of 261 total anomalous pulmonary venous connection (TAPVC) cases operated at Children's Hospital 1 with in-hospital mortality of 19.5% (51/261). METHODS: All the surgical protocols of TAPVC cases repaired between 2008 and June 2023 were reviewed. The descriptions of TAPVC were based on operative findings by surgeons. RESULTS: A total of 261 TAPVC patients were operated, including 124 (47.5%) supra, 83 (31.8%) intra, 41 (15.7%) infra, and 13 (5%) mixed cases. The in-hospital mortality was 19.5% (51/261). Fifteen cases are associated with other anomalies of the heart. Four subtypes of 124 supra TAPVC were found, with 42 (33.9%) obstructed cases. The standard was all pulmonary veins (PVs) forming a common vein (CV) and draining into the innominate veins, then going to the superior vena cava (SVC) (100/124, 80.6%). Eleven supra TAPVC cases were vascular vise type. Ten cases had the vertical vein running from the right of the CV and draining directly into the SVC. Of 83 intracardiac TAPVCs with 9 (10.8%) obstructed cases, the most common was all PVs draining directly into the coronary sinus (60/83, 72.3%). The second was all PVs draining directly into the right atrium (RA) via separated ostia or forming a CV before entering the RA (17/83, 20.5%). Also, there were three cases with rare variants and 100% obstruction when the diagnosis was explored. The in-hospital mortality of intracardiac type was 13.3% (11/83) 41 infra TAPVC with obstructed rate of 61% (25/41) and in-hospital mortality of 29.3% (12/41). Thirteen mixed TAPVCs were repaired, with most cases having three PVs forming a CV. CONCLUSION: This article provides valuable information about the morphology of TAPVC types in Asian patients.


Asunto(s)
Mortalidad Hospitalaria , Venas Pulmonares , Síndrome de Cimitarra , Humanos , Femenino , Masculino , Síndrome de Cimitarra/cirugía , Síndrome de Cimitarra/mortalidad , Vietnam/epidemiología , Estudios Retrospectivos , Venas Pulmonares/anomalías , Venas Pulmonares/cirugía , Lactante , Recién Nacido , Preescolar , Procedimientos Quirúrgicos Cardíacos/métodos , Niño
3.
Front Pharmacol ; 14: 1190476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180699

RESUMEN

Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.

4.
Transl Stroke Res ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37088858

RESUMEN

Senicapoc, a small molecule inhibitor of the calcium-activated potassium channel KCa3.1, was safe and well-tolerated in clinical trials for sickle cell anemia. We previously reported proof-of-concept data suggesting that both pharmacological inhibition and genetic deletion of KCa3.1 reduces infarction and improves neurologic recovery in rodents by attenuating neuroinflammation. Here we evaluated the potential of repurposing senicapoc for ischemic stroke. In cultured microglia, senicapoc inhibited KCa3.1 currents with an IC50 of 7 nM, reduced Ca2+ signaling induced by the purinergic agonist ATP, suppressed expression of pro-inflammatory cytokines and enzymes (iNOS and COX-2), and prevented induction of the inflammasome component NLRP3. When transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in male C57BL/6 J mice, twice daily administration of senicapoc at 10 and 40 mg/kg starting 12 h after reperfusion dose-dependently reduced infarct area determined by T2-weighted magnetic resonance imaging (MRI) and improved neurological deficit on day 8. Ultra-high-performance liquid chromatography/mass spectrometry analysis of total and free brain concentrations demonstrated sufficient KCa3.1 target engagement. Senicapoc treatment significantly reduced microglia/macrophage and T cell infiltration and activation and attenuated neuronal death. A different treatment paradigm with senicapoc started at 3 h and MRI on day 3 and day 8 revealed that senicapoc reduces secondary infarct growth and suppresses expression of inflammation markers, including T cell cytokines in the brain. Lastly, we demonstrated that senicapoc does not impair the proteolytic activity of tissue plasminogen activator (tPA) in vitro. We suggest that senicapoc could be repurposed as an adjunctive immunocytoprotective agent for combination with reperfusion therapy for ischemic stroke.

5.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985697

RESUMEN

Metal-based aerogels have attracted numerous studies due to their unique physical, structural, thermal, and chemical properties. Utilizing aluminum waste, a novel, facile, environmentally friendly approach to aluminum-based aerogels is proposed. In this work, the aluminum-based aerogels produced do not use toxic chemicals unlike conventional aerogel production. Aluminum powder, with poly(acrylic acid) and carboxymethyl cellulose as binders, is converted into aluminum-based aerogels using the freeze-drying method. The aluminum-based aerogels have low density (0.08-0.12 g/cm3) and high porosity (93.83-95.68%). The thermal conductivity of the aerogels obtained is very low (0.038-0.045 W/m·K), comparable to other types of aerogels and commercial heat insulation materials. Additionally, the aerogels can withstand temperatures up to 1000 °C with less than 40% decomposition. The aerogels exhibited promising oil absorption properties with their absorption capacity of 9.8 g/g and 0.784 g/cm3. The Young's modulus of the aerogels ranged from 70.6 kPa to 330.2 kPa. This study suggests that aluminum-based aerogels have potential in thermal insulation and oil absorption applications.

6.
Mymensingh Med J ; 32(1): 144-152, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594314

RESUMEN

Renal insufficiency is a risk factor for osteoporosis and can increase risk of fracture. It may be a result of an age-related decline in renal function or chronic kidney disease. In patients with CKD, accurate diagnosis of osteoporosis or CKD-MBD is important for determining the most appropriate treatment. This was a cross sectional study was done at Institute of nuclear medicine and Allied Sciences, BSMMU, Dhaka from 1st January 2014 to 31st December 2014. Study population was total 69 postmenopausal women age over 50 years. Women with Bilateral hip replacement or bilateral hip pins or screws, metallic rods in spine, Carrying out BMD scan within the week after other radiological investigation using contrast media e.g. Barium meals or enema, IVPs were excluded from study. Clinical variables were- age (years), height (cm), weight (kg), BMI. Laboratory variables were- serum creatinine and BMD (Dexa). Estimated GFR was determined by using the serum Creatinine by MDRD formula. Renal function test and Bone mineral density (BMD) were done in all of these patients. Majority (43.4%) of the patients were in 6th decade. The mean weight was found 57.4±11.2kg. Majority 41(59.4%) patients belonged to T score at hip (-1 to -2.5) and their mean T score at hip was found (-1.1±1.1). Osteopenia and osteoporosis were found in 59.4% and 4.3% respectively according to BMD. High serum creatinine level was found in 10.1% cases. Renal function impairment was found in 79.6% of patient. Majority (50.7%) patients had mild decrease of eGFR (60-89 ml/min/1.73m²), There was Pearson's correlation (r=0.156; p=0.200) but not significant was found between age with T score at hip of the patients. Positive Pearson's correlation (r=0.112; p=0.361) was found but not significant between age and serum creatinine level. A significant negative Pearson's correlation (r= -0.274; p=0.023) was found between T score at hip and serum creatinine level of the patients. A significant negative Spearman correlation (r=-0.278; p=0.021) was found between BMD and serum creatinine of the patients. A significant positive Spearman correlation (r=0.580; p=0.001) was found between BMD and estimated GFR of the patients. This study was undertaken to evaluate the relationship between renal function and bone mineral density in postmenopausal women. Majority of the postmenopausal women were in 6th decade and most of them were overweight and obese. Renal function impairment was found in 79.6% of patient. Osteoporosis was found in 04.3% and 20.3% cases according to T score at hip and T score at lumber spine respectively. Significant negative Pearson's correlation was found between T score at hip and serum creatinine level of the patients. Significant negative Spearman correlation was found between BMD and serum creatinine of the patients. Significant positive Spearman correlation was found between BMD and estimated GFR of the patients.


Asunto(s)
Osteoporosis , Insuficiencia Renal Crónica , Humanos , Femenino , Persona de Mediana Edad , Densidad Ósea , Estudios Transversales , Creatinina , Posmenopausia , Bangladesh/epidemiología , Osteoporosis/epidemiología , Insuficiencia Renal Crónica/complicaciones , Riñón/fisiología , Absorciometría de Fotón
7.
Neuropharmacology ; 224: 109349, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436594

RESUMEN

Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 µM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 µM) compared to NaV1.2 (IC50 = 118 µM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratas , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Riluzol/farmacología , Cinética , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Hipocampo , Ácido Kaínico/toxicidad , Modelos Animales de Enfermedad
8.
Elife ; 112022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576241

RESUMEN

The voltage-gated sodium NaV1.7 channel plays a key role as a mediator of action potential propagation in C-fiber nociceptors and is an established molecular target for pain therapy. ProTx-II is a potent and moderately selective peptide toxin from tarantula venom that inhibits human NaV1.7 activation. Here we used available structural and experimental data to guide Rosetta design of potent and selective ProTx-II-based peptide inhibitors of human NaV1.7 channels. Functional testing of designed peptides using electrophysiology identified the PTx2-3127 and PTx2-3258 peptides with IC50s of 7 nM and 4 nM for hNaV1.7 and more than 1000-fold selectivity over human NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.8, and NaV1.9 channels. PTx2-3127 inhibits NaV1.7 currents in mouse and human sensory neurons and shows efficacy in rat models of chronic and thermal pain when administered intrathecally. Rationally designed peptide inhibitors of human NaV1.7 channels have transformative potential to define a new class of biologics to treat pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Dolor , Péptidos , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Ratones , Ratas , Nociceptores , Dolor/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Diseño de Fármacos
9.
J Geophys Res Biogeosci ; 127(6): e2021JG006711, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35859986

RESUMEN

Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity. This article describes how missions can overcome this bottleneck using the spatial continuity of atmospheric fields. Contemporary imaging spectrometers oversample atmospheric spatial variability, so it is not necessary to invert every pixel. Spatially sparse solutions can train local linear emulators that provide fast, exact inversions in their vicinity. We find that estimating the atmosphere at 200 m scales can outperform traditional atmospheric correction, improving speed by one to two orders of magnitude with no measurable penalty to accuracy. We validate performance with an airborne field campaign, showing reflectance accuracies with RMSE of 1.1% or better compared to ground measurements of diverse targets. These errors are statistically consistent with retrieval uncertainty budgets. Local emulators can close the efficiency gap and make rigorous model inversion algorithms feasible for global missions such as SBG.

10.
Nat Commun ; 13(1): 2807, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589718

RESUMEN

Single-atom catalysts (SACs) offer many advantages, such as atom economy and high chemoselectivity; however, their practical application in liquid-phase heterogeneous catalysis is hampered by the productivity bottleneck as well as catalyst leaching. Flow chemistry is a well-established method to increase the conversion rate of catalytic processes, however, SAC-catalysed flow chemistry in packed-bed type flow reactor is disadvantaged by low turnover number and poor stability. In this study, we demonstrate the use of fuel cell-type flow stacks enabled exceptionally high quantitative conversion in single atom-catalyzed reactions, as exemplified by the use of Pt SAC-on-MoS2/graphite felt catalysts incorporated in flow cell. A turnover frequency of approximately 8000 h-1 that corresponds to an aniline productivity of 5.8 g h-1 is achieved with a bench-top flow module (nominal reservoir volume of 1 cm3), with a Pt1-MoS2 catalyst loading of 1.5 g (3.2 mg of Pt). X-ray absorption fine structure spectroscopy combined with density functional theory calculations provide insights into stability and reactivity of single atom Pt supported in a pyramidal fashion on MoS2. Our study highlights the quantitative conversion bottleneck in SAC-mediated fine chemicals production can be overcome using flow chemistry.

11.
Mol Pharmacol ; 102(1): 438-449, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489717

RESUMEN

Impaired cerebellar Purkinje neuron firing resulting from reduced expression of large-conductance calcium-activated potassium (BK) channels is a consistent feature in models of inherited neurodegenerative spinocerebellar ataxia (SCA). Restoring BK channel expression improves motor function and delays cerebellar degeneration, indicating that BK channels are an attractive therapeutic target. Current BK channel activators lack specificity and potency and are therefore poor templates for future drug development. We implemented an automated patch clamp platform for high-throughput drug discovery of BK channel activators using the Nanion SyncroPatch 384PE system. We screened over 15,000 compounds for their ability to increase BK channel current amplitude under conditions of lower intracellular calcium that is present in disease. We identified several novel BK channel activators that were then retested on the SyncroPatch 384PE to generate concentration-response curves (CRCs). Compounds with favorable CRCs were subsequently tested for their ability to improve irregular cerebellar Purkinje neuron spiking, characteristic of BK channel dysfunction in SCA1 mice. We identified a novel BK channel activator, 4-chloro-N-(5-chloro-2-cyanophenyl)-3-(trifluoromethyl)benzene-1-sulfonamide (herein renamed BK-20), that exhibited a more potent half-maximal activation of BK current (pAC50 = 4.64) than NS-1619 (pAC50 = 3.7) at a free internal calcium concentration of 270 nM in a heterologous expression system and improved spiking regularity in SCA1 Purkinje neurons. BK-20 had no activity on small-conductance calcium-activated potassium (SK)1-3 channels but interestingly was a potent blocker of the T-type calcium channel, Cav3.1 (IC50 = 1.05 µM). Our work describes both a novel compound for further drug development in disorders with irregular Purkinje spiking and a unique platform for drug discovery in degenerative ataxias. SIGNIFICANCE STATEMENT: Motor impairment associated with altered Purkinje cell spiking due to dysregulation of large-conductance calcium-activated potassium (BK) channel expression and function is a shared feature of disease in many degenerative ataxias. BK channel activators represent an outstanding therapeutic agent for ataxia. We have developed a high-throughput platform to screen for BK channel activators and identified a novel compound that can serve as a template for future drug development for the treatment of these disabling disorders.


Asunto(s)
Ataxia Cerebelosa , Canales de Potasio Calcio-Activados , Ataxias Espinocerebelosas , Animales , Ataxia , Calcio/metabolismo , Ataxia Cerebelosa/tratamiento farmacológico , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Potasio/metabolismo , Ataxias Espinocerebelosas/metabolismo
12.
Waste Biomass Valorization ; 13(4): 1825-1847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34745389

RESUMEN

Tons of waste from residential, commercial and manufacturing activities are generated due to the growing population, urbanization and economic development, prompting the need for sustainable measures. Numerous ways of converting waste to aerogels, a novel class of ultra-light and ultra-porous materials, have been researched to tackle the issues of waste. This review provides an overview of the status of aerogels made from agricultural waste, municipal solid, and industrial waste focusing on the fabrication, properties, and applications of such aerogels. The review first introduced common methods to synthesize the aerogels from waste, including dispersion and drying techniques. Following that, numerous works related to aerogels from waste are summarized and compared, mainly focusing on the sustainability aspect of the processes involved and their contributions for environmental applications such as thermal insulation and oil absorption. Next, advantages, and disadvantages of the current approaches are analyzed. Finally, some prospective waste aerogels and its applications are proposed.

13.
Pharm Res ; 38(7): 1247-1261, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34117588

RESUMEN

PURPOSE: Skin and soft tissue infections are increasingly prevalent and often complicated by potentially fatal therapeutic hurdles, such as poor drug perfusion and antibiotic resistance. Delivery vehicles capable of versatile loading may improve local bioavailability and minimize systemic toxicities yet such vehicles are not clinically available. Therefore, we aimed to expand upon the use of glutathione-conjugated poly(ethylene glycol) GSH-PEG hydrogels beyond protein delivery and evaluate the ability to deliver traditional therapeutic molecules. METHODS: PEG and GSH-PEG hydrogels were prepared using ultraviolet light (UV)-polymerization. Hydrogel loading and release of selected drug candidates was examined using UV-visible spectrometry. Therapeutic molecules and GST-fusion protein loading was examined using UV-visible and fluorescent spectrometry. Efficacy of released meropenem was assessed against meropenem-sensitive and -resistant P. aeruginosa in an agar diffusion bioassay. RESULTS: For all tested agents, GSH-PEG hydrogels demonstrated time-dependent loading whereas PEG hydrogels did not. GSH-PEG hydrogels released meropenem over 24 h. Co-loading of biologic and traditional therapeutics into a single vehicle was successfully demonstrated. Meropenem-loaded GSH-PEG hydrogels inhibited the growth of meropenem-sensitive and resistant P. aeruginosa isolates. CONCLUSION: GSH ligands within GSH-PEG hydrogels allow loading and effective delivery of charged therapeutic agents, in addition to biologic therapeutics.


Asunto(s)
Antibacterianos/administración & dosificación , Productos Biológicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacocinética , Disponibilidad Biológica , Productos Biológicos/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Farmacorresistencia Bacteriana , Quimioterapia Combinada , Glutatión/química , Humanos , Meropenem/administración & dosificación , Meropenem/farmacocinética , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Enfermedades Cutáneas Bacterianas
14.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33649184

RESUMEN

Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aß) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aß mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aß burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Canal de Potasio Kv1.3/metabolismo , Microglía/metabolismo , Células Mieloides/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Canal de Potasio Kv1.3/genética , Masculino , Ratones
15.
Waste Manag ; 124: 1-7, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592320

RESUMEN

Massive quantities of fly ash are produced worldwide from thermal power plants, posing a serious environmental threat due to their storage and disposal problems. In this study, for the first time, fly ash is converted into an advanced and novel aerogel through a green and eco-friendly process. The developed aerogel has a low density of 0.10-0.19 g cm-3, a high porosity of up to 90%, a low thermal conductivity of 0.042-0.050 W/mK, and a good sound absorption coefficient (noise reduction coefficient [NRC] value of 0.20-0.30). It also shows a high compressive Young's modulus of up to 150 kPa. Therefore, the newly developed fly ash aerogel is a potential material for thermal and acoustic insulation applications, along with lightweight composites in automotive and aerospace applications.


Asunto(s)
Ceniza del Carbón , Centrales Eléctricas , Acústica , Porosidad , Conductividad Térmica
16.
Channels (Austin) ; 15(1): 67-78, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356832

RESUMEN

In the last 5 years inhibitors of the potassium channel KV1.3 have been shown to reduce neuroinflammation in rodent models of ischemic stroke, Alzheimer's disease, Parkinson's disease and traumatic brain injury. At the systemic level these beneficial actions are mediated by a reduction in microglia activation and a suppression of pro-inflammatory cytokine and nitric oxide production. However, the molecular mechanisms for the suppressive action of KV1.3 blockers on pro-inflammatory microglia functions was not known until our group recently demonstrated that KV1.3 channels not only regulate membrane potential, as would be expected of a voltage-gated potassium channel, but also play a crucial role in enabling microglia to resist depolarizations produced by the danger signal ATP thus regulating calcium influx through P2X4 receptors. We here review the role of KV1.3 in microglial signaling and show that, similarly to their role in T cells, KV1.3 channels also regulated store-operated calcium influx in microglia.


Asunto(s)
Microglía , Enfermedad de Alzheimer , Señalización del Calcio , Potenciales de la Membrana , Enfermedades Neuroinflamatorias , Canales de Potasio con Entrada de Voltaje
17.
ACS Pharmacol Transl Sci ; 3(4): 720-736, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832873

RESUMEN

We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.

18.
J Clin Invest ; 130(8): 4195-4212, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32597830

RESUMEN

Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Ratones , Ratones Noqueados , Microglía/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Glia ; 68(11): 2377-2394, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32525239

RESUMEN

Microglia-mediated inflammation exerts adverse effects in ischemic stroke and in neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the voltage-gated potassium channel Kv1.3 is required for microglia activation. Both genetic deletion and pharmacological inhibition of Kv1.3 are effective in reducing microglia activation and the associated inflammatory responses, as well as in improving neurological outcomes in animal models of AD and ischemic stroke. Here we sought to elucidate the molecular mechanisms underlying the therapeutic effects of Kv1.3 inhibition, which remain incompletely understood. Using a combination of whole-cell voltage-clamp electrophysiology and quantitative PCR (qPCR), we first characterized a stimulus-dependent differential expression pattern for Kv1.3 and P2X4, a major ATP-gated cationic channel, both in vitro and in vivo. We then demonstrated by whole-cell current-clamp experiments that Kv1.3 channels contribute not only to setting the resting membrane potential but also play an important role in counteracting excessive membrane potential changes evoked by depolarizing current injections. Similarly, the presence of Kv1.3 channels renders microglia more resistant to depolarization produced by ATP-mediated P2X4 receptor activation. Inhibiting Kv1.3 channels with ShK-223 completely nullified the ability of Kv1.3 to normalize membrane potential changes, resulting in excessive depolarization and reduced calcium transients through P2X4 receptors. Our report thus links Kv1.3 function to P2X4 receptor-mediated signaling as one of the underlying mechanisms by which Kv1.3 blockade reduces microglia-mediated inflammation. While we could confirm previously reported differences between males and females in microglial P2X4 expression, microglial Kv1.3 expression exhibited no gender differences in vitro or in vivo. MAIN POINTS: The voltage-gated K+ channel Kv1.3 regulates microglial membrane potential. Inhibition of Kv1.3 depolarizes microglia and reduces calcium entry mediated by P2X4 receptors by dissipating the electrochemical driving force for calcium.


Asunto(s)
Potenciales de la Membrana , Adenosina Trifosfato , Enfermedad de Alzheimer , Animales , Calcio , Femenino , Inflamación , Microglía , Receptores Purinérgicos P2 , Receptores Purinérgicos P2X4
20.
Carbohydr Polym ; 228: 115365, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31635729

RESUMEN

A promising and economic material for various applications, such as thermal insulation in construction building and oil clean-up in marine ecosystems, is successfully developed from the by-product of the sugarcane industry. Biodegradable sugarcane bagasse aerogels are produced using polyvinyl alcohol (PVA) binder, followed by a freeze-drying method. This environmental-friendly recycled aerogel has an ultra-low density ([0.016-0.112] g/cm3), a high porosity ([91.9-98.9]%), and a very low thermal conductivity ([0.031-0.042] W/mK). Its superhydrophobicity properties and its maximum oil absorption capacity (up to 25 g/g) are measured after coating aerogel samples with methyltrimethoxysilane (MTMS). The biodegradable aerogel has a Young's modulus of 88 K Pa and can be bent without breaking, demonstrating its high flexibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...