Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
Biomed Pharmacother ; 180: 117424, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303451

RESUMEN

Erythroleukemia, a subtype of acute myeloid leukemia (AML), is a life-threatening malignancy that affects the blood and bone marrow. Despite the availability of clinical treatments, the complex pathogenesis of the disease and the severe side effects of chemotherapy continue to impede therapeutic progress in leukemia. In this study, we investigated the antitumor activity of L76, an acylphloroglucinol compound derived from Callistemon salignus DC., against erythroleukemia, along with its underlying mechanisms. MTT assays were performed to evaluate the inhibitory effects of L76 on cancer cell viability, while flow cytometry was used to analyze apoptosis and cell cycle arrest in HEL cells. The molecular mechanisms of L76 were further explored using Western blotting, microscopic analysis, and cellular thermal shift assays (CETSA). Our in vitro experiments demonstrated that L76 inhibits proliferation, induces G1/S cell cycle arrest, and promotes apoptosis in human leukemia cells. Mechanistically, L76 exerts its effects by targeting STAT3 and p38-MAPK, and by inhibiting the PI3K/AKT/mTOR signaling pathway. In conclusion, this study highlights the potential of L76 as an anti-erythroleukemia agent, demonstrating its ability to target STAT3 and p38-MAPK, and to inhibit the PI3K/AKT/mTOR signaling pathway. These findings suggest that L76 could be a promising candidate for the treatment of erythroleukemia.

2.
Medicine (Baltimore) ; 103(37): e39562, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39287288

RESUMEN

PURPOSE: In patients undergoing hemiarthroplasty in the elderly, the choice of the cemented method remains controversial. This meta-analysis was undertaken to compare the impact of cemented vs uncemented on outcomes for hemiarthroplasty in the elderly. METHODS: This study included randomized controlled trials comparing the postoperative effects of cemented vs uncemented in patients with hemiarthroplasty. With no language restrictions, we searched Medline (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Cochrane Collaboration), Clinical Trials.gov, the ISRCTN registry, as well as gray literature with no language restrictions from January 1966 to April 2023. Data were quantitatively summarized using a random-effects model. The primary outcome was 1-year mortality. RESULTS: This study included 13 randomized controlled trials with 3485 patients. The primary outcomes of the meta-analysis showed that cemented fixation in elderly patients undergoing hemiarthroplasty was superior to noncemented in 1-year mortality (risk ratio [RR] = 0.87, 95% confidence interval [CI]: 0.77, 0.97). Moreover, cemented was associated with a reduced risk of intraoperative periprosthetic fracture (RR = 0.19, 95% CI: 0.07, 0.50), postoperative periprosthetic fracture (RR = 0.34, 95% CI: 0.16,0.72), and loosening (RR = 0.33, 95% CI: 0.11, 0.97). CONCLUSIONS: Cemented hemiarthroplasty is superior to noncemented in terms of survival. Moreover, cementation reduces the incidence of some implant-related complications. More extensive trials are needed to provide adequate guidance for choosing the proper cemented method.


Asunto(s)
Cementos para Huesos , Hemiartroplastia , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Hemiartroplastia/métodos , Anciano , Complicaciones Posoperatorias/epidemiología , Resultado del Tratamiento , Cementación/métodos , Anciano de 80 o más Años , Fracturas Periprotésicas/epidemiología , Femenino , Masculino
3.
Artículo en Inglés | MEDLINE | ID: mdl-39283715

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) are enzymes that catalyze the hydrolysis of cyclic adenosine monophosphate AMP (cAMP) and/or cyclic guanosine monophosphate (cGMP). PDE inhibitors can mitigate chronic pain and depression when these disorders occur individually; however, there is limited understanding of their role in concurrent chronic pain and depression. We aimed to evaluate the mechanisms of action of PDE using two mouse models of concurrent chronic pain and depression. METHODS: C57BL/6J mice were subjected to partial sciatic nerve ligation (PSNL) to induce chronic neuropathic pain or injected with complete Freund's adjuvant (CFA) to induce inflammatory pain, and both animals showed depression-like behavior. First, we determined the change in PDE expression in both animal models. Next, we determined the effect of PDE7 inhibitor BRL50481 or hippocampal PDE7A knockdown on PSNL- or CFA-induced chronic pain and depression-like behavior. We also investigated the role of cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling and neuroinflammation in the effect of PDE7A inhibition on PSNL- or CFA-induced chronic pain and depression-like behavior. RESULTS: This induction of chronic pain and depression in the two animal models upregulated hippocampal PDE7A. Oral administration of PDE7 inhibitor, BRL50481, or hippocampal PDE7A knockdown significantly reduced mechanical hypersensitivity and depression-like behavior. Hippocampal PDE7 inhibition reversed PSNL- or CFA-induced downregulation of cAMP and BDNF and the phosphorylation of PKA, CREB and p65. cAMP agonist forskolin, reversed these changes and caused milder behavioral symptoms of pain and depression. BRL50481 reversed neuroinflammation in the hippocampus in PSNL mice. CONCLUSIONS: Hippocampal PDE7A mediated concurrent chronic pain and depression in both mouse models by inhibiting cAMP-PKA-CREB-BDNF signaling Inhibiting PDE7A or activating cAMP-PKA-CREB-BDNF signaling are potential strategies to treat concurrent chronic pain and depression.

4.
Huan Jing Ke Xue ; 45(9): 5329-5340, 2024 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-39323151

RESUMEN

Exploring the characteristics of vegetation change and its influencing factors is essential to construct an ecological environment. Based on the NDVI dataset from 2000 to 2020, this study analyzed the spatial temporal attributes of NDVI changes in Shandong Province using the Sen trend analysis and the gravity center migration model. Furthermore, the spatial heterogeneity of NDVI and its influencing factors within the whole study area and different soil and water conservation zones were investigated using a Geo-detector model, considering population, hydrological, topographic, soil types, and vegetation types. The results were as follows: ① The NDVI in Shandong Province from 2000 to 2020 showed a fluctuating upward trend with significant seasonal characteristics that varied from different zones. The annual NDVI change showed a trend of single-peak in the Ⅲ-4-2t, Ⅲ-4-1xt, and Ⅲ-5-2w but showed a trend of double-peak in the Ⅲ-5-3fn. ② Regarding the spatial distribution, the NDVI was higher in the west-north and west-south areas and lower in the north and coastal areas. During the 21 years, the primary type of NDVI change was "medium-high coverage → high coverage," especially in the northeastern part of the soil conservation area of the Ⅲ-4-2t, the western part of the Ⅲ-4-1xt, and the ecological maintenance area of the Ⅲ-5-2w. Overall, 61.47% of the area had a positive trend of NDVI change with the gravity center of high coverage mitigating to the northeast, and the ecological environment was improved. ③ Soil types and population density were the dominant factors affecting NDVI in Shandong Province, with q values of 0.174 and 0.130, respectively. The chief factor in the Ⅲ-5-3fn, Ⅲ-4-2t, and Ⅲ-4-1xt was population density, with q values higher than 0.22, and the dominant factors in the Ⅲ-5-2w were soil types and vegetation types, with q values of 0.326 and 0.227, respectively. The interaction of the two factors enhanced the influence of the single factor, and the relationship between the influencing factors showed two-factor enhancement and nonlinear enhancement. The q-value of population density ∩ relative humidity was the highest, with a value of 0.257 in the Ⅲ-5-3fn. The q-value of population density ∩ soil types was the highest in the Ⅲ-4-2t and Ⅲ-4-1xt, reaching 0.297 and 0.378, respectively. The q-value of soil types ∩ vegetation types was the highest, with a value of 0.444 in the Ⅲ-5-2w. The results are expected to provide valuable references for improving the ecological environment of Shandong Province and lay a scientific foundation to make different conservation strategies for the individual soil and water conservation zones.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , China , Suelo/química , Monitoreo del Ambiente , Ecosistema , Estaciones del Año , Conservación de los Recursos Hídricos
5.
Water Res X ; 25: 100253, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39291147

RESUMEN

Efficient carbon use is crucial for biological nitrogen removal. Traditional aerobic processes can waste carbon sources, exacerbating carbon deficiency. This study explores an anaerobic/oxic/anoxic system with sludge double recirculation to improve nitrogen removal in low C/N wastewater. This system integrated aerobic nitrification after the carbon intracellular storage, separating carbon and nitrogen by denitrifying glycogen-accumulating organisms (DGAOs) with endogenous partial denitrification and Anammox within the anoxic units. A significant efficiency of 91.02±7.01% chemical oxygen demand (COD) was converted into intracellular carbon in anaerobic units, significantly reducing carbon futile oxidation in the aerobic units by effectively separating COD from ammonia. Intracellular storage of carbon sources and microbial adaptation to carbon scarcity prevent futile oxidation of COD in the aerobic units even with short-term high dissolved oxygen (DO), thereby enhancing nitrogen removal under anoxic conditions with sufficient intracellular carbon source. The microbial analysis identified Candidatus Brocadia as the dominant anammox bacteria, in combination with the activity of DGAOs and other related microbial communities, accounting for 37.0% of the TN removal. Consequently, the system demonstrated remarkable nitrogen removal efficiencies, achieving 81.3±3.3% for total nitrogen (TN) and 98.5±0.9% for ammonia nitrogen while maintaining an effluent COD concentration of 17.2±9.1 mg/L, treating the low C/N of 4.18 in the influent wastewater. The findings in this study provide a sustainable and energy-saving technique for conventional WWTPs to meet strict discharge standards by avoiding futile oxidation of COD and encouraging anammox contributions.

6.
Environ Pollut ; 361: 124885, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233271

RESUMEN

Polybrominated diphenyl ethers (PBDEs) and their alternatives (e.g., dechlorane plus (DPs) and decabromodiphenyl ethane (DBDPE)) are ubiquitous in various environmental media. However, limited data is available on these chemicals in edible fish species from the wide-open South China Sea (SCS). In the present study, ten legacy PBDEs and three substitutions (DBDPE and two DPs) were analyzed in 16 wild fish species sampled from the open SCS to investigate their spatial and species-specific variations. The results showed that the total concentrations of PBDEs, DBDPE, and DPs in fish samples were in the range of 1.69-47.6, not detected (nd) to 21.0, and nd to 3.80 ng/g lipid weight (lw), respectively. BDEs 47, 209 and 100 were the dominant target PBDE congeners, representing 49.2%, 17.2% and 9.93% of the total PBDE concentrations, respectively. Higher concentrations of PBDEs, DBDPE, and DPs were found in fish species from the Wanshan Archipelago compared to those from the Mischief Reef and the Yongxing Island, suggesting the significant influence of anthropogenic activities. Species-specific differences in levels of PBDEs were observed, with the order of bathydemersal > demersal > pelagic ≈ reef-associated > benthopelagic species. The average fanti value of all fish samples was 0.68, suggesting commercial DP products as a contamination source. The levels of PBDEs, DPs, and DBDPE in fish samples were relatively low compared with those from other locations around the globe. Finally, the health risks concerning the ingestion of BDEs 47, 99, 153 and 209 via fish consumption collected from the SCS are negligible.

7.
PNAS Nexus ; 3(9): pgae371, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234501

RESUMEN

Acute lung injury (ALI) is a serious adverse event in the management of acute type A aortic dissection (ATAAD). Using a large-scale cohort, we applied artificial intelligence-driven approach to stratify patients with different outcomes and treatment responses. A total of 2,499 patients from China 5A study database (2016-2022) from 10 cardiovascular centers were divided into 70% for derivation cohort and 30% for validation cohort, in which extreme gradient boosting algorithm was used to develop ALI risk model. Logistic regression was used to assess the risk under anti-inflammatory strategies in different risk probability. Eight top features of importance (leukocyte, platelet, hemoglobin, base excess, age, creatinine, glucose, and left ventricular end-diastolic dimension) were used to develop and validate an ALI risk model, with adequate discrimination ability regarding area under the receiver operating characteristic curve of 0.844 and 0.799 in the derivation and validation cohort, respectively. By the individualized treatment effect prediction, ulinastatin use was significantly associated with significantly lower risk of developing ALI (odds ratio [OR] 0.623 [95% CI 0.456, 0.851]; P = 0.003) in patients with a predicted ALI risk of 32.5-73.0%, rather than in pooled patients with a risk of <32.5 and >73.0% (OR 0.929 [0.682, 1.267], P = 0.642) (Pinteraction = 0.075). An artificial intelligence-driven risk stratification of ALI following ATAAD surgery were developed and validated, and subgroup analysis showed the heterogeneity of anti-inflammatory pharmacotherapy, which suggested individualized anti-inflammatory strategies in different risk probability of ALI.

8.
ACS Nano ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238258

RESUMEN

Rescuing or compensating mitochondrial function represents a promising therapeutic avenue for radiation-induced chronic wounds. Adult stem cell efficacies are primarily dependent on the paracrine secretion of mitochondria-containing extracellular vesicles (EVs). However, effective therapeutic strategies addressing the quantity of mitochondria and mitochondria-delivery system are lacking. Thus, in this study, we aimed to design an effective hydrogel microneedle patch (MNP) loaded with stem cell-derived mitochondria-rich EVs to gradually release and deliver mitochondria into the wound tissues and boost wound healing. We, first, used metformin to enhance mitochondrial biogenesis and thereby increasing the secretion of mitochondria-containing EVs (termed "Met-EVs") in adipose-derived stem cells. To verify the therapeutic effects of Met-EVs, we established an in vitro and an in vivo model of X-ray-induced mitochondrial dysfunction. The Met-EVs ameliorated the mitochondrial dysfunction by rescuing mitochondrial membrane potential, increasing adenosine 5'-triphosphate levels, and decreasing reactive oxygen species production by transferring active mitochondria. To sustain the release of EVs into damaged tissues, we constructed a Met-EVs@Decellularized Adipose Matrix (DAM)/Hyaluronic Acid Methacrylic Acid (HAMA)-MNP. Met-EVs@DAM/HAMA-MNP can load and gradually release Met-EVs and their contained mitochondria into wound tissues to alleviate mitochondrial dysfunction. Moreover, we found Met-EVs@DAM/HAMA-MNP can markedly promote macrophage polarization toward the M2 subtype with anti-inflammatory and regenerative functions, which can, in turn, enhance the healing process in mice with skin wounds combined radiation injuries. Collectively, we successfully fabricated a delivery system for EVs, Met-EVs@DAM/HAMA-MNP, to effectively deliver stem cell-derived mitochondria-rich EVs. The effectiveness of this system has been demonstrated, holding great potential for chronic wound treatments in clinic.

9.
Angew Chem Int Ed Engl ; : e202412080, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234632

RESUMEN

Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022 mg cm-2, delivering the current density of 1 A cm-2 at the cell voltage of ~1.66 V and continuously running for 200 hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.

10.
Diabetes Obes Metab ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285685

RESUMEN

AIMS: To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses. We also validated the findings in an independent Wenzhou PERSONS cohort of MAFLD patients (n = 656) used for a genome-wide association study (GWAS). RESULTS: GLS, GCSH and ATP7B genes showed significant differences across the MAFLD spectrum and were significantly associated with liver fibrosis stages. GLS was closely associated with fibrosis stages in patients with MAFLD and those with MAFLD-related HCC. GLS is predominantly expressed in monocytes and T cells in MAFLD. During the progression of metabolic dysfunction-associated fatty liver to metabolic-associated steatohepatitis, GLS expression in T cells decreased. GWAS revealed that multiple single nucleotide polymorphisms in GLS were associated with clinical indicators of MAFLD. CONCLUSIONS: GLS may contribute to liver inflammation and fibrosis in MAFLD mainly through cuprotosis and T-cell activation, promoting the progression of MAFLD to HCC. These findings suggest that cuprotosis may play a role in MAFLD progression, potentially providing new insights into MAFLD pathogenesis.

11.
Front Mol Biosci ; 11: 1409060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247207

RESUMEN

Objective: This study aimed to investigate the value of a CT-enhanced scanning radiomics nomogram in distinguishing between early hepatic abscess (EHA) and intrahepatic cholangiocarcinoma (ICC) and to validate its diagnostic efficacy. Materials and Methods: Clinical and imaging data on 112 patients diagnosed with EHA and ICC who underwent double-phase CT-enhanced scanning at our hospital were collected. The contours of the lesions were delineated layer by layer across the three phases of CT scanning and enhancement using 3D Slicer software to define the region of interest (ROI). Subsequently, the contours were merged into 3D models, and radiomics features were extracted using the Radiomics plug-in. The data were randomly divided into training (n = 78) and validation (n = 34) cohorts at a 7:3 ratio, using the R programming language. Standardization was performed using the Z-score method, and LASSO regression was used to select the best λ-value for screening variables, which were then used to establish prediction models. The rad-score was calculated using the best radiomics model, and a joint model was constructed based on the rad-score and clinical scores. A nomogram was developed based on the joint model. The diagnostic efficacy of the models for distinguishing ICC and EHA was assessed using receiver operating characteristic (ROC) curve and area under the curve (AUC) analyses. Calibration curves were used to evaluate the reliability and accuracy of the nomograms, while decision curves and clinical impact curves were utilized to assess their clinical value. Results: Compared with the ICC group, significant differences were observed in clinical data and imaging characteristics in the EHA group, including age, centripetal enhancement, hepatic pericardial depression sign, arterial perfusion abnormality, arterial CT value, and arteriovenous enhancement (p < 0.05). Logistic regression analysis identified centripetal enhancement, hepatic pericardial depression sign, arterial perfusion abnormality, arterial CT value, and arteriovenous enhancement as independent influencing factors. Three, five, and four radiomics features were retained in the scanning, arterial, and venous phases, respectively. Single-phase models were constructed, with the radiomics model from the arterial phase demonstrating the best diagnostic efficacy. The rad-score was calculated using the arterial-phase radiomics model, and nomograms were drawn in conjunction with the clinical model. The nomogram based on the combined model exhibited the highest differential diagnostic efficacy between EHA and ICC (training cohort: AUC of 0.972; validation cohort: AUC of 0.868). The calibration curves indicated good agreement between the predicted and pathological results, while decision curves and clinical impact curves demonstrated higher clinical utility of the nomograms. Conclusion: The CT-enhanced scanning radiomics nomogram demonstrates high clinical value in distinguishing between EHA and ICC, thereby enhancing the accuracy of preoperative diagnosis.

12.
Fitoterapia ; 178: 106160, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098734

RESUMEN

Patrinia punctiflora is a medical and edible Chinese herb with high nutritional and medicinal value. The continuing study of its chemical constituents led to the isolation of six iridoids, which were previously unreported compounds, patriscabioins PU (1-6). Their structures were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Among them, compound 5 was screened to evaluate its insulin resistance activity on an IR-HepG-2 cell model. Compound 5 had no cytotoxicity compared with the control group and could promote glucose uptake in IR-HepG-2 cells. Through further mechanism studies, the undescribed compound 5 could increase the expression levels of PI-3 K, p-AKT, GLUT4 and p-GSK3ß proteins. Moreover, the expression of PEPCK and G6Pase proteins, which are key gluconeogenic enzymes, was also inhibited. Thus, compound 5 promotes the transfer of GLUT4 to the plasma membrane by activating the PI-3 K/AKT signaling pathway, at the same time, promotes glycogen synthesis and inhibits the onset of gluconeogenesis, which in turn ameliorates insulin resistance.


Asunto(s)
Resistencia a la Insulina , Iridoides , Patrinia , Humanos , Células Hep G2 , Iridoides/farmacología , Iridoides/aislamiento & purificación , Iridoides/química , Patrinia/química , Estructura Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Transducción de Señal/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , China , Fosfatidilinositol 3-Quinasas/metabolismo
13.
Front Nutr ; 11: 1292954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144288

RESUMEN

Background: Numerous observational studies have presented an association between Vitamin D (VD) and Alcoholic Liver Disease (ALD). However, sufficient evidence from Randomized Controlled Trials (RCTs) substantiating this correlation is scarce, thus leaving the causality of this relationship ambiguous. To overcome the shortcomings of traditional observational studies, we performed a two-sample bidirectional Mendelian randomization (MR) analysis to ascertain the causal relationship between VD and ALD. Methods: We utilized summary statistics datasets from Genome-Wide Association Studies (GWAS) for VD and ALD. We selected genetic instruments that measure circulating VD levels (n = 64,979), and retrieved ALD statistics from GWASs, inclusive of 1,416 cases and 217,376 healthy controls, while excluding chronic liver diseases such as nonalcoholic fatty liver disease, toxic liver disease, and viral hepatitis. Subsequent, MR analyses were performed to obtain effect estimates using inverse variance weighted (IVW) random effect models. Cochran's Q statistic and MR-Egger regression intercept analyses were used to assess pleiotropy. Sensitivity analyses using the MR Egger, weighted median, simple mode, and weighted mode methods were also performed. Leave-one-out analysis was used to identify SNPs with potential effect. Reverse MR analysis was also performed. Results: In IVW, our MR analysis incorporated 21 independent SNPs, circulating VD levels had no causal effect on ALD [OR = 0.624 (0.336-1.160), p = 0.136] and ALD had no causal effect on circulating VD [OR = 0.997 (0.986-1.008), p = 0.555]. No heterogeneity or pleiotropy was observed (p > 0.05). Other MR methods also agreed with IVW results. Conclusion: This study provides the causal relationship between genetically predicted circulating Vitamin D levels and ALD and provides new insights into the genetics of ALD.

14.
Heliyon ; 10(14): e34986, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148973

RESUMEN

Background: Electroacupuncture (EA) has been shown to promote functional recovery after cerebral ischemia-reperfusion (I/R) injury. However, the contribution of mitochondrial dynamics to recovery remains unclear. The aim of this study was to investigate whether mitochondrial dynamics are involved in the effects of EA on cerebral I/R injury. Methods: The rats with cerebral I/R injury were established by the middle cerebral artery occlusion/reperfusion. Subsequently, EA was applied to Baihui (GV20) and Dazhui (GV14) acupoints, with 2 Hz/5 Hz in frequency, 1.0 mA in intensity, 20 min each time, once a day for seven consecutive days. The therapeutic outcomes were assessed by modified neurological severity score (mNSS), 2,3,5-Triphenyte-trazolium chloride (TTC) staining, and hematoxylin-eosin (HE) staining. Mitochondrial morphology was observed under transmission electron microscopy. Adenosine triphosphate (ATP) content and ATP synthases (ATPases) activity were evaluated to measure mitochondrial function using ELISA. Finally, mitochondrial dynamics-related molecules, including dynamin-related protein 1 (Drp1), fission 1 (Fis1), mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic atrophy 1 (OPA1), were detected by Western blot and immunofluorescence staining. Results: Cerebral I/R injury induced neurological dysfunction, cerebral infarction and neuronal injury, all of which were ameliorated by EA. And EA improved mitochondrial morphology and function. Moreover, EA altered the balance of mitochondrial dynamics. Specifically, the data showed a significant decrease in the expression of Drp1 and Fis1, leading to the inhibition of mitochondrial fission. Additionally, Mfn1, Mfn2 and Opa1, which are related to mitochondrial fusion, were effectively promoted after EA treatment. However, sham EA did not show any neuroprotective effects in rats with cerebral I/R injury. Conclusions: In summary, our study indicates that the balance of mitochondrial dynamics is crucial for EA therapy to treat cerebral I/R injury.

15.
Int Microbiol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172273

RESUMEN

The aquaculture sector, vital to global food security, grapples with bacterial pathogens compromising fish health and industry sustainability. This investigation probes mucosal immune responses and gut microbiota dynamics in snakehead (Channa argus) post-Aeromonas infection, a prevalent aquaculture challenge. Employing infection models, we delineated the integral role of immunoglobulin T (IgT) in mucosal immunity and its interaction with gut microbiota. Fish from a local farm, maintained under controlled conditions, were infected with Aeromonas veronii TH0426 and Aeromonas hydrophila TPS. Post-infection, daily monitoring and sample collection at specified intervals were conducted for comprehensive analysis. Histopathology, quantitative PCR, immunofluorescence, and microbiota profiling revealed significant immune and microbial changes, particularly at day 7. Intestinal IgT, IgM, and pIgR gene expression surged, indicative of a robust response. Immunofluorescence microscopy confirmed increased IgT+ and pIgR+ cell infiltration in the epithelium. Post-infection dysbiosis, with altered bacterial composition, was partially offset by elevated IgT levels. These insights underscore IgT's crucial function in mucosal defense and suggest potential for probiotic and vaccine strategies to enhance aquaculture disease resilience.

18.
Curr Med Sci ; 44(4): 854-863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112916

RESUMEN

OBJECTIVE: This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses. METHODS: PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells. RESULTS: The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results. CONCLUSION: LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.


Asunto(s)
Antiinflamatorios , Supervivencia Celular , Reparación del ADN , Lipopolisacáridos , Saponinas , Triterpenos , Animales , Células PC12 , Ratas , Lipopolisacáridos/farmacología , Triterpenos/farmacología , Saponinas/farmacología , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
19.
Environ Pollut ; : 124783, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173864

RESUMEN

Understanding the factors that drive PM2.5 concentrations in cities with varying population and land areas is crucial for promoting sustainable urban population health. This knowledge is particularly important for countries where air pollution is a significant challenge. Most existing studies have investigated either anthropogenic or environmental factors in isolation, often in limited geographic contexts; however, this study fills this knowledge gap. We employed a multimethodological approach, using both multiple linear regression models and geographically weighted regression (GWR), to assess the combined and individual effects of these factors across different cities in China. The variables considered were urban built-up area, land consumption rate (LCR), population size, population growth rate (PGR), longitude, and latitude. Compared with other studies, this study provides a more comprehensive understanding of PM2.5 drivers. The findings of this study showed that PGR and population size are key factors affecting PM2.5 concentrations in smaller cities. In addition, the extent of urban built-up areas exerts significant influence in medium and large cities. Latitude was found to be a positive predictor for PM2.5 concentrations across all city sizes. Interestingly, the northeast, south, and southwest regions demonstrated lower PM2.5 levels than the central, east, north, and northwest regions. The GWR model underscored the importance of considering spatial heterogeneity in policy interventions. However, this research is not without limitations. For instance, international pollution transfers were not considered. Despite the limitation, this study advances the existing literature by providing an understanding of how both anthropogenic and environmental factors, in conjunction with city scale, shape PM2.5 concentrations. This integrated approach offers invaluable insights for tailoring more effective air pollution management strategies across cities of different sizes and characteristics.

20.
Adv Mater ; : e2408045, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177118

RESUMEN

Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...