Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674016

RESUMEN

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Asunto(s)
Dinaminas , Rechazo de Injerto , Trasplante de Corazón , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Trasplante de Corazón/efectos adversos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Transducción de Señal
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762319

RESUMEN

The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Humanos , Masculino , Porcinos , Animales , Sulfuro de Hidrógeno/farmacología , Criopreservación , Mitocondrias
3.
Biomed Pharmacother ; 163: 114787, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37126930

RESUMEN

BACKGROUND AND PURPOSE: Cisplatin-induced nephrotoxicity manifests as acute kidney injury (AKI) in approximately one third of patients receiving cisplatin therapy. Current measures of AKI are inadequate in detecting AKI prior to significant renal injury, and better biomarkers are needed for early diagnosis of cisplatin-induced AKI. EXPERIMENTAL APPROACH: C57BL/6 and FVB/N mice were treated with a single intraperitoneal injection of cisplatin (15 mg kg-1) or saline. Plasma, urine, and kidney samples were collected prior to cisplatin injection and 24-, 48-, 72-, and 96-hours following cisplatin injection. Untargeted metabolomics was employed using liquid chromatography-mass spectrometry to identify early diagnostic biomarkers for cisplatin nephrotoxicity. PRINCIPAL RESULTS: There was clear metabolic discrimination between saline and cisplatin-treated mice at all timepoints (day 1 to day 4). In total, 26 plasma, urine, and kidney metabolites were identified as exhibiting early alterations following cisplatin treatment. Several of the metabolites showing early alterations were associated with mitochondrial function and energetics, including intermediates of the tricarboxylic acid cycle, regulators of mitochondrial function and indicators of fatty acid ß-oxidation dysfunction. Furthermore, several metabolites were derived from the gut microbiome. MAJOR CONCLUSIONS: Our results highlight the detrimental effects of cisplatin on mitochondrial function and demonstrate potential involvement of the gut microbiome in the pathophysiology of cisplatin-induced AKI. We provide a panel of metabolites to guide future clinical studies of cisplatin-induced AKI and provide insight into potential mechanisms behind cisplatin nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Biomarcadores/metabolismo , Cisplatino/toxicidad , Riñón , Metabolómica , Ratones Endogámicos C57BL
4.
Blood Purif ; : 1-8, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36007503

RESUMEN

BACKGROUND: Long-term peritoneal dialysis (PD), especially with nonphysiological solutions, is afflicted with the severe complication of encapsulating peritoneal sclerosis (EPS). Physiologic PD solutions have been introduced to reduce pH trauma. Data on peritoneal biopsies in pediatrics with long-term PD using physiological solutions are scant. CASE REPORT: We report an adolescent who had been on 10-h continuous hourly cycles using mostly 2.27% Physioneal™ for 5 years. There were two episodes of peritonitis in October 2017 (Klebsiella oxytoca) and May 2018 (Klebsiella pneumoniae), which were treated promptly. This adolescent, who lost two kidney transplants from recurrent focal and segmental glomerulosclerosis, underwent a peritoneal membrane biopsy at the time of a third PD catheter placement, 16 months after the second renal transplant. Laparoscopically, the peritoneum appeared grossly normal, but fibrosis and abundant hemosiderin deposition were noted on histology. The thickness of the peritoneum was 200-900 (mean 680) µm; normal for age of 14 years is 297 [IQR 229, 384] µm. The peritoneum biopsy did not show specific EPS findings, as the mesothelial cells were intact, and there was a lack of fibrin exudation, neo-membrane, fibroblast proliferation, infiltration, or calcification. CONCLUSIONS: While the biopsy was reassuring with respect to the absence of EPS, significant histopathological changes suggest that avoiding pH trauma may not ameliorate the effects of glucose exposure in long-term PD.

5.
Sci Prog ; 105(3): 368504221117070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979627

RESUMEN

Graft versus host disease is a rare but deadly complication of solid organ transplant. Clinical features of graft-versus-host-disease are non-specific, which may lead to delayed diagnosis as more common conditions including infections or drug reactions are considered. We describe a 54-year-old male patient who underwent liver transplantation for alcohol use disorder-related cirrhosis and developed acute graft-versus-host disease. Initial clinical presentation included dermatitis, bone marrow failure and enteritis. Results of skin biopsy and cytogenetic studies were consistent with liver transplant-associated acute graft-versus-host disease. The importance of this case is to highlight to transplant physicians and surgeons the challenges of diagnosing graft-versus-host-disease. In our case, pre-existing partnerships among the liver and hematopoietic stem cell transplant teams, transfusion medicine specialists, critical care specialists and facilitated timely communication relevant to confirming graft-versus-host disease. We propose an algorithm to assist in the workup of suspected graft-versus-host disease. Because this condition is characterized by high mortality, a high index of suspicion is imperative for prompt diagnosis and optimal management of the donor-recipient immune interaction when patients present with classic clinical features.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Hígado , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , Trasplante de Hígado/efectos adversos , Masculino , Persona de Mediana Edad , Linfocitos T
6.
Can J Surg ; 65(2): E193-E202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35292525

RESUMEN

BACKGROUND: The increasing use of kidneys from donations after cardiac death (DCD) for renal transplantation is hindered by negative outcomes owing to organ injury after prolonged warm and cold ischemia-reperfusion. Recently, hydrogen sulfide (H2S) has shown cytoprotective effects against ischemia-reperfusion injury; however, its effectiveness in the context of DCD renal transplantation is unknown. METHODS: We tested a novel 30-day in vivo syngeneic murine model of DCD renal transplantation, in which the donor kidney was clamped for 30 minutes and stored for 18 hours in cold University of Wisconsin (UW) solution or UW with 150 µM sodium hydrogen sulfide (UW + NaHS) before transplantation. We also tested a 7-day in vivo porcine model of DCD renal autotransplantation, in which the left kidney was clamped for 60 minutes and preserved for 24 hours using hypothermic perfusion with UW or UW + 150 µM NaHS before autotransplantation. We collected blood and urine samples periodically, and collected kidney samples at the end point for histopathology and quantitative reverse transcription polymerase chain reaction. RESULTS: Rats that received H2S-treated kidneys showed significantly higher survival, faster recovery of graft function and significantly lower acute tubular necrosis than controls. Pig kidneys perfused with UW + NaHS showed significantly higher renal blood flow and lower renal resistance than control kidneys after 24 hours of perfusion. After autotransplantation, pigs that received H2S-treated kidneys showed significantly lower serum creatinine on days 1 and 7 after transplantation. Rat and pig kidneys treated with H2S also showed more protective gene expression profiles than controls. CONCLUSION: Our findings support the potential use of H2S-supplemented UW solution during cold storage as a novel and practical means to improve DCD graft survival and function.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Soluciones Preservantes de Órganos , Daño por Reperfusión , Adenosina , Alopurinol , Animales , Muerte , Glutatión , Humanos , Sulfuro de Hidrógeno/farmacología , Insulina , Riñón/irrigación sanguínea , Ratones , Soluciones Preservantes de Órganos/farmacología , Rafinosa , Ratas , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Porcinos
7.
J Invest Surg ; 35(1): 104-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33400888

RESUMEN

Objective We have previously demonstrated benefits of kidney preservation utilizing an oxygenated subnormothermic ex vivo perfusion platform. Herein, we aim to compare pulsatile versus centrifugal (steady and uniform flow) perfusion with the goal of optimizing renal preservation with these devices. Materials and methods: Pig kidneys were procured following 30 min of warm ischemia by cross-clamping both renal arteries. Paired kidneys were cannulated and underwent either: oxygenated pulsatile or centrifugal perfusion using a hemoglobin oxygen carrier at room temperature with our ex vivo machine perfusion platform for 4 hr. Kidneys were reperfused with whole blood for 4 hr at 37° C. Renal function, pathology and evidence of inflammation were assessed post-perfusion. Results: Both pump systems performed equally well with organs exhibiting similar renal blood flow, and function post-reperfusion. Histologic evidence of renal damage using apoptosis staining and acute tubular necrosis scores was similar between groups. This was corroborated with urinary assessment of renal damage (NGAL 1) and inflammation (IL-6), as levels were similar between groups. Conclusion: In our porcine model with added warm ischemia simulating the effects of reperfusion after transplantation, pulsatile perfusion yielded similar renal protection compared with centrifugal perfusion kidney preservation. Both methods of perfusion can be used in ex vivo kidney perfusion systems.


Asunto(s)
Trasplante de Riñón , Riñón , Preservación de Órganos , Animales , Perfusión , Flujo Pulsátil , Porcinos
8.
Biomed Pharmacother ; 145: 112435, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34798469

RESUMEN

INTRODUCTION: Cold ischemia-reperfusion injury (IRI) is an inevitable event that increases post-transplant complications. We have previously demonstrated that supplementation of University of Wisconsin (UW) solution with non-FDA-approved hydrogen sulfide (H2S) donor molecules minimizes cold IRI and improves renal graft function after transplantation. The present study investigates whether an FDA-approved H2S donor molecule, sodium thiosulfate (STS), will have the same or superior effect in a clinically relevant rat model of syngeneic orthotopic kidney transplantation. METHOD: Thirty Lewis rats underwent bilateral nephrectomy followed by syngeneic orthotopic transplantation of the left kidney after 24-hour preservation in either UW or UW+STS solution at 4 °C. Rats were monitored to post-transplant day 14 and sacrificed to assess renal function (urine output, serum creatinine and blood urea nitrogen). Kidney sections were stained with H&E, TUNEL, CD68, and myeloperoxidase (MPO) to detect acute tubular necrosis (ATN), apoptosis, macrophage infiltration, and neutrophil infiltration. RESULT: UW+STS grafts showed significantly improved graft function immediately after transplantation, with improved recipient survival compared to UW grafts (p < 0.05). Histopathological examination revealed significantly reduced ATN, apoptosis, macrophage and neutrophil infiltration and downregulation of pro-inflammatory and pro-apoptotic genes in UW+STS grafts compared to UW grafts (p < 0.05). CONCLUSION: We show for the first time that preservation of renal grafts in STS-supplemented UW solution protects against prolonged cold IRI by suppressing apoptotic and inflammatory pathways, and thereby improving graft function and prolonging recipient survival. This could represent a novel clinically applicable therapeutic strategy to minimize the detrimental clinical outcome of prolonged cold IRI in kidney transplantation.


Asunto(s)
Trasplante de Riñón/métodos , Soluciones Preservantes de Órganos/farmacología , Daño por Reperfusión/prevención & control , Tiosulfatos/farmacología , Adenosina/administración & dosificación , Adenosina/farmacología , Alopurinol/administración & dosificación , Alopurinol/farmacología , Animales , Apoptosis/fisiología , Nitrógeno de la Urea Sanguínea , Isquemia Fría/efectos adversos , Creatinina/sangre , Glutatión/administración & dosificación , Glutatión/farmacología , Insulina/administración & dosificación , Insulina/farmacología , Pruebas de Función Renal , Masculino , Soluciones Preservantes de Órganos/administración & dosificación , Rafinosa/administración & dosificación , Rafinosa/farmacología , Ratas , Ratas Endogámicas Lew , Tasa de Supervivencia , Tiosulfatos/administración & dosificación
9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681708

RESUMEN

Ischemia-reperfusion injury (IRI) is an inevitable consequence of organ transplant procedure and associated with acute and chronic organ rejection in transplantation. IRI leads to various forms of programmed cell death, which worsens tissue damage and accelerates transplant rejection. We recently demonstrated that necroptosis participates in murine cardiac microvascular endothelial cell (MVEC) death and murine cardiac transplant rejection. However, MVEC death under a more complex IRI model has not been studied. In this study, we found that simulating IRI conditions in vitro by hypoxia, reoxygenation and treatment with inflammatory cytokines induced necroptosis in MVECs. Interestingly, the apoptosis-inducing factor (AIF) translocated to the nucleus during MVEC necroptosis, which is regulated by the mitochondrial permeability molecule cyclophilin D (CypD). Furthermore, CypD deficiency in donor cardiac grafts inhibited AIF translocation and mitigated graft IRI and rejection (n = 7; p = 0.002). Our studies indicate that CypD and AIF play significant roles in MVEC necroptosis and cardiac transplant rejection following IRI. Targeting CypD and its downstream AIF may be a plausible approach to inhibit IRI-caused cardiac damage and improve transplant survival.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Necroptosis , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Factor Inductor de la Apoptosis/antagonistas & inhibidores , Factor Inductor de la Apoptosis/genética , Hipoxia de la Célula , Núcleo Celular/metabolismo , Peptidil-Prolil Isomerasa F/deficiencia , Peptidil-Prolil Isomerasa F/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Interferón gamma/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/citología , Modelos Biológicos , Necroptosis/efectos de los fármacos , Oxígeno/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Necrosis Tumoral alfa/farmacología
10.
PLoS One ; 16(4): e0249838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891625

RESUMEN

Reperfusion injury following cold and warm ischemia (IRI) is unavoidable during kidney transplantation and contributes to delayed graft function (DGF) and premature graft loss. Death of tubular epithelial cells (TECs) by necrosis during IRI releases pro-inflammatory mediators (e.g. HMGB1), propagating further inflammation (necroinflammation) and tissue damage. Kidney Injury Molecule-1 (KIM-1) is a phagocytic receptor upregulated on proximal TECs during acute kidney injury. We have previously shown that renal KIM-1 protects the graft against transplant associated IRI by enabling TECs to clear apoptotic and necrotic cells, and that recognition of necrotic cells by KIM-1 is augmented in the presence of the opsonin, apoptosis inhibitor of macrophages (AIM). Here, we tested whether recombinant AIM (rAIM) could be used to mitigate transplant associated IRI. We administered rAIM or vehicle control to nephrectomised B6 mice transplanted with a single B6 donor kidney. Compared to grafts in vehicle-treated recipients, grafts from rAIM-treated mice exhibited significantly less renal dysfunction, tubular cell death, tissue damage, tubular obstruction, as well as local and systemic inflammation. Both mouse and human rAIM enhanced the clearance of necrotic cells by murine and human TECs, respectively in vitro. These data support testing of rAIM as a potential therapeutic agent to reduce DGF following kidney transplantation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/uso terapéutico , Funcionamiento Retardado del Injerto/tratamiento farmacológico , Trasplante de Riñón/efectos adversos , Receptores Depuradores/uso terapéutico , Animales , Proteínas Reguladoras de la Apoptosis/administración & dosificación , Células Cultivadas , Funcionamiento Retardado del Injerto/prevención & control , Células HEK293 , Humanos , Trasplante de Riñón/métodos , Ratones , Ratones Endogámicos C57BL , Receptores Depuradores/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico
11.
Am J Transplant ; 21(10): 3268-3279, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33784431

RESUMEN

Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.


Asunto(s)
Trasplante de Corazón , Receptor Toll-Like 3 , Animales , Apoptosis , Muerte Celular , Trasplante de Corazón/efectos adversos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Donantes de Tejidos , Receptor Toll-Like 3/metabolismo
12.
Case Rep Dermatol ; 13(1): 98-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708090

RESUMEN

Pilomatrixoma is an uncommon, benign tumor with differentiation towards both the hair matrix and cells arising in the cortex, most frequently appearing in the first or second decade of life. In rare instances, pilomatrixomas can show malignant transformation. Pilomatrix carcinoma is extremely uncommon and has traditionally been considered a tumor of low malignant potential; however, a high local recurrence rate has been reported. There is a paucity of literature on these lesions, with only a few reports describing the spectrum of malignant changes seen in these lesions. In this case report, we present a case of pilomatrixoma in an adult patient showing atypical features. While the tumor is small, there are focal features that suggest progression to malignancy, but do not fulfill the criteria for pilomatrix carcinoma. These focal atypical features include a focal infiltrative pattern at the periphery, with a variable cytological atypia and an increased mitotic rate, up to five mitotic events/high-power field. Irregular foci of central necrosis (comedonecrosis) were present in several lobules. Some of the features identified were similar to a subset of pilomatrixoma, known as "proliferating pilomatrixoma." However, our case did not have the diffuse changes or larger size that has been frequently reported in "proliferating pilomatrixoma." In conclusion, given the lack of focality of the changes, the lesion in our case is best described as a pilomatricoma with atypical features. Furthermore, our case may highlight the need to ensure close clinical follow-up for these lesions with unexpected atypical features that raise concern of recurrence and malignant transformation.

13.
Cell Rep ; 31(1): 107475, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268085

RESUMEN

Thymine DNA glycosylase (TDG) is a nuclear receptor coactivator that plays an essential role in the maintenance of epigenetic stability in cells. Here, we demonstrate that the conditional deletion of TDG in adult mice results in a male-predominant onset of hepatocellular carcinoma (HCC). TDG loss leads to a prediabetic state, as well as bile acid (BA) accumulation in the liver and serum of male mice. Consistent with these data, TDG deletion led to dysregulation of the farnesoid X receptor (FXR) and small heterodimer partner (SHP) regulatory cascade in the liver. FXR and SHP are tumor suppressors of HCC and play an essential role in BA and glucose homeostasis. These results indicate that TDG functions as a tumor suppressor of HCC by regulating a transcriptional program that protects against the development of glucose intolerance and BA accumulation in the liver.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Carcinoma Hepatocelular/fisiopatología , Timina ADN Glicosilasa/metabolismo , Animales , Ácidos y Sales Biliares/genética , Carcinoma Hepatocelular/metabolismo , Femenino , Glucosa/metabolismo , Células Hep G2 , Homeostasis , Humanos , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo , Timina ADN Glicosilasa/fisiología
14.
Indian J Pathol Microbiol ; 63(1): 78-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32031127

RESUMEN

INTRODUCTION: Epstein-Barr Virus (EBV)-associated systemic T-cell lymphoproliferative disorder of childhood is a rare but severe manifestation of chronic EBV infection. Despite several case reports characterizing this rare hematological neoplasm, the literature describes extensive heterogeneity in the presentation of this disease. CASE PRESENTATION: Here we present a complete autopsy of a 16-year-old girl who ultimately succumbed to EBV-associated systemic T-cell lymphoproliferative disorder of childhood. Her clinical presentation demonstrated a non-specific pharyngitis with positive mono spot test, evolving into fulminant multi-organ failure, disseminated intravascular coagulopathy, sepsis, and ultimately death. CONCLUSIONS: Post-mortem findings included extensive hemorrhage, and infiltration of the liver, spleen, lymph nodes and bone marrow with neoplastic T-cells. There was extensive hemophagocytic lymphohistiocytosis (HLH) within these organs, suggesting overlap between the EBV-associated systemic T-cell lymphoproliferative disorder of childhood and EBV-associated HLH. We hope these findings provide a more comprehensive overview of several possible manifestations of EBV-associated systemic T-cell lymphoproliferative disorder of childhood.


Asunto(s)
Autopsia , Infecciones por Virus de Epstein-Barr/patología , Linfohistiocitosis Hemofagocítica/patología , Trastornos Linfoproliferativos/patología , Adolescente , Biopsia , Médula Ósea/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Resultado Fatal , Femenino , Humanos , Ganglios Linfáticos/patología , Linfohistiocitosis Hemofagocítica/virología , Trastornos Linfoproliferativos/virología , Insuficiencia Multiorgánica , Sepsis , Linfocitos T/patología
15.
Kidney Int Rep ; 4(9): 1323-1333, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31517151

RESUMEN

INTRODUCTION: The current methods of preserving donor kidneys in nonoxygenated cold conditions minimally protect the kidney against ischemia-reperfusion injury (IRI), a major source of complications in clinical transplantation. However, preserving kidneys with oxygenated perfusion is not currently feasible due to the lack of an ideal perfusion mechanism that facilitates perfusion with blood at warm temperature. Here, we have designed an innovative renal pump circuit system that can perfuse blood or acellular oxygen carrier under flexible temperatures, pressures, and oxygenation. We have tested this apparatus to study optimal conditions of storage of our porcine model of donation after cardiac death (DCD) kidneys. METHODS: Porcine kidneys were retrieved after 30 minutes of cross-clamping renal pedicles in situ. Cessation of blood mimics postcardiac death in humans and simulates DCD warm ischemic injury. Procured kidneys were flushed and subjected to static cold storage (SCS) for 4 hours. For warm perfusion, kidneys were cannulated for pulsatile oxygenated perfusion with blood:PlasmaLyte for 4 hours at 15 °C, 22 °C, and 37 °C. To mimic posttransplant scenario, all kidneys were reperfused with blood for an additional 4 hours at 37 °C. RESULTS: Compared with all other groups, 22 °C perfusion resulted in significant reduction of acute tubular necrosis (ATN), apoptosis, kidney damage markers, Toll-like receptor signaling, and cytokine production. It was associated with maximal renal blood flow and urine output. Kidneys stored at 15 °C thrombosed within 2 hours under this condition. Martius Scarlet Blue staining confirmed that 22 °C was the optimal temperature to minimize hemorrhage and blood clots. CONCLUSION: Our novel study shows that oxygenated perfusion at near-room-temperature provides optimal donor kidney storage conditions.

16.
Am J Transplant ; 19(3): 686-698, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30203531

RESUMEN

Transplantation is invariably associated with programmed cell death including apoptosis and necrosis, resulting in delayed graft function and organ rejection. We have demonstrated the contribution of necroptosis to mouse microvascular endothelial cell (MVEC) death and transplant rejection. Organ injury results in the opening of mitochondrial permeability transition pores (mPTPs), which can trigger apoptotic molecules release that ultimately results in cell death. The effect of mPTPs in the necroptotic pathway remains controversial; importantly, their role in transplant rejection is not clear. In this study, tumor necrosis factor-α triggered MVECs to undergo receptor-interacting protein kinase family (RIPK1/3)-dependent necroptosis. Interestingly, inhibition of mPTP opening could also inhibit necroptotic cell death. Cyclophilin-D (Cyp-D) is a key regulator of the mPTPs. Both inhibition and deficiency of Cyp-D protected MVECs from necroptosis (n = 3, P < .00001). Additionally, inhibition of Cyp-D attenuated RIPK3-downstream mixed-lineage kinase domain-like protein phosphorylation. In vivo, Cyp-D-deficient cardiac grafts showed prolonged survival in allogeneic BALB/c mice posttransplant compared with wild-type grafts (n = 7, P < .0001). Our study results suggest that the mPTPs may be important mechanistic mediators of necroptosis in cardiac grafts. There is therapeutic potential in targeting cell death via inhibition of the mPTP-regulating molecule Cyp-D to prevent cardiac graft rejection.


Asunto(s)
Permeabilidad de la Membrana Celular , Células Endoteliales/patología , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Mitocondrias/patología , Necroptosis , Peptidil-Prolil Isomerasa F/metabolismo , Aloinjertos , Animales , Peptidil-Prolil Isomerasa F/genética , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Supervivencia de Injerto , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/inmunología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Donantes de Tejidos , Factor de Necrosis Tumoral alfa/farmacología
17.
Nephrology (Carlton) ; 24(6): 661-669, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30175514

RESUMEN

BACKGROUND: Ischaemia-reperfusion injury (IRI) is associated with programmed cell death that promotes inflammation and organ dysfunction. Necroptosis is mediated by members of receptor interacting protein kinases (RIPK1/3). Inhibition of RIPK1/3 provides a pro-survival benefit in kidney IRI. Caspase-8 initiates apoptosis and contributes to IRI. We studied whether inhibiting both RIPK3 and caspase-8 would provide an additional benefit in kidney IRI. METHODS: A clamp was applied to the left kidney pedicle for 45 min followed by right kidney nephrectomy. Kidney and serum from wild type, RIPK3-/- , and RIPK3-/- caspase-8-/- double knockout (DKO) mice were collected post-IRI for assessment of injury. Tubular epithelial cells (TEC) isolated from wild type, RIPK3-/- , and DKO mice were treated with interferons-γ and interleukin-1ß to induce apoptotic death. RESULTS: Kidney IRI of DKO mice did not show improvement over RIPK3-/- mice. We have found that DKO triggered 'intrinsic' apoptosis in TEC in response to interleukin-1ß and interferons-γ. Up-regulation of the B-cell lymphoma 2 (Bcl-2)-associated death promoter, the Bcl-2-homologous antagonist killer and Bcl-2-associated X protein and enhanced activation of caspase-3 and 9 were found in DKO TEC. TEC infected with Murine cytomegalovirus that encodes multiple cell death inhibitors resist to death. CONCLUSION: We show that the deletion of both RIPK3 and caspase-8 does not provide additive benefit in IRI or TEC death and may enhance injury by up-regulation of intrinsic apoptosis. This suggests blocking multiple death pathways may be required for the prevention of kidney IRI clinically.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Células Epiteliales/enzimología , Enfermedades Renales/enzimología , Túbulos Renales/enzimología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Daño por Reperfusión/enzimología , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/genética , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Interferón gamma/farmacología , Interleucina-1beta/farmacología , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal
18.
Transplantation ; 102(7): 1066-1074, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29677080

RESUMEN

BACKGROUND: Carbon monoxide (CO) inhalation protects organ by reducing inflammation and cell death during transplantation processes in animal model. However, using CO in clinical transplantation is difficult due to its delivery in a controlled manner. A manganese-containing CO releasing molecules (CORM)-401 has recently been synthesized which can efficiently deliver 3 molar equivalents of CO. We report the ability of this anti-inflammatory CORM-401 to reduce ischemia reperfusion injury associated with prolonged cold storage of renal allografts obtained from donation after circulatory death in a porcine model of transplantation. METHODS: To stimulate donation after circulatory death condition, kidneys from large male Landrace pig were retrieved after 1 hour warm ischemia in situ by cross-clamping the renal pedicle. Procured kidneys, after a brief flushing with histidine-tryptophan-ketoglutarate solution were subjected to pulsatile perfusion at 4°C with University of Wisconsin solution for 4 hours and both kidneys were treated with either 200 µM CORM-401 or inactive CORM-401, respectively. Kidneys were then reperfused with normothermic isogeneic porcine blood through oxygenated pulsatile perfusion for 10 hours. Urine was collected, vascular flow was assessed during reperfusion and histopathology was assessed after 10 hours of reperfusion. RESULTS: We have found that CORM-401 administration reduced urinary protein excretion, attenuated kidney damage markers (kidney damage marker-1 and neutrophil gelatinase-associated lipocalin), and reduced ATN and dUTP nick end labeling staining in histopathologic sections. CORM-401 also prevented intrarenal hemorrhage and vascular clotting during reperfusion. Mechanistically, CORM-401 appeared to exert anti-inflammatory actions by suppressing Toll-like receptors 2, 4, and 6. CONCLUSIONS: Carbon monoxide releasing molecules-401 provides renal protection after cold storage of kidneys and provides a novel clinically relevant ex vivo organ preservation strategy.


Asunto(s)
Monóxido de Carbono/farmacología , Trasplante de Riñón/efectos adversos , Manganeso/química , Preservación de Órganos/métodos , Daño por Reperfusión/prevención & control , Adenosina/química , Aloinjertos/patología , Alopurinol/química , Animales , Monóxido de Carbono/metabolismo , Isquemia Fría/efectos adversos , Glutatión/química , Insulina/química , Riñón/patología , Masculino , Modelos Animales , Preservación de Órganos/instrumentación , Soluciones Preservantes de Órganos/química , Rafinosa/química , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Sus scrofa
19.
Am J Transplant ; 18(8): 2021-2028, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29603641

RESUMEN

Ischemia-reperfusion injury during kidney transplantation predisposes to delayed graft function, rejection, and premature graft failure. Exacerbation of tissue damage and alloimmune responses may be explained by necroinflammation: an autoamplification loop of cell death and inflammation, which is mediated by the release of damage-associated molecular patterns (eg, high-mobility group box-1; HMGB1) from necrotic cells that activate both innate and adaptive immune pathways. Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is upregulated on injured proximal tubular epithelial cells and enables them to clear apoptotic and necrotic cells. Here we show a pivotal role for clearance of dying cells in regulating necroinflammation in a syngeneic murine kidney transplant model. We found persistent KIM-1 expression in KIM-1+/+ kidney grafts posttransplantation. Compared to recipients of KIM-1+/+ kidneys, recipients of KIM-1-/- kidneys exhibited significantly more renal dysfunction, apoptosis and necrosis, tubular obstruction, and graft failure. KIM-1-/- grafts also had more inflammatory cytokines, infiltrating neutrophils, and macrophages compared to KIM-1+/+ grafts. Most significantly, passive release of HMGB1 from apoptotic and necrotic cells led to dramatically higher serum HMGB1 levels and increased proinflammatory macrophages in recipients of KIM-1-/- grafts. Our data identify an endogenous protective mechanism against necroinflammation in kidney grafts that may be of therapeutic relevance in transplantation.


Asunto(s)
Funcionamiento Retardado del Injerto/prevención & control , Receptor Celular 1 del Virus de la Hepatitis A/fisiología , Inflamación/prevención & control , Trasplante de Riñón/métodos , Necrosis , Daño por Reperfusión/prevención & control , Donantes de Tejidos , Animales , Apoptosis , Funcionamiento Retardado del Injerto/metabolismo , Funcionamiento Retardado del Injerto/patología , Supervivencia de Injerto , Proteína HMGB1/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
20.
Nitric Oxide ; 76: 16-28, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522906

RESUMEN

OBJECTIVES: To assess the effects of slow-releasing H2S donor GYY4137 on post-obstructive renal function and injury following unilateral ureteral obstruction (UUO) by using the UUO and reimplantation (UUO-R) model in rats and to elucidate potential mechanisms by using an in vitro model of epithelial-mesenchymal transition (EMT). METHODS: Male Lewis rats underwent UUO at the left ureterovesical junction. From post-operative day (POD) 1-13, rats received daily intraperitoneal (IP) injection of phosphate buffered saline (PBS, 1 mL) or GYY4137 (200 µmol/kg/day in 1 mL PBS, IP). On POD 14, the ureter was reimplanted back into the bladder, followed by a right nephrectomy. Urine and serum samples were collected to monitor renal function. On POD 30, the left kidney was removed and tissue sections were stained with H&E, TUNEL, CD68, CD206, myeloperoxidase, and Masson's trichrome to determine cortical thickness, apoptosis, inflammation, and fibrosis. In our in vitro model of EMT, NRK52E cells were treated with 10 ng/mL TGF-ß1, 10 µM GYY4137 and/or 50 µM GYY4137. Western blot analysis was performed to determine the expression of E-cadherin, vimentin, Smad7 and TGF-ß1 receptor II (TßRII). RESULTS: GYY4137 led to a moderate decrease in post-obstructive serum creatinine, cystatin C and FENa. We also observed a trend towards a decrease in post-obstructive proteinuria following GYY4137 treatment. Histologically, we observed a significant decrease in apoptosis, inflammation, and fibrosis. Furthermore, our in vitro studies demonstrate that in the presence of TGF-ß1, GYY4137 significantly decreases vimentin and TßRII and significantly increases E-cadherin and Smad7. CONCLUSIONS: H2S may help to accelerate the recovery of renal function post-obstruction and attenuates renal injury associated with UUO. It is possible that H2S mitigates fibrosis by regulating the TGF-ß1-mediated EMT pathway. Taken together, our data suggest that H2S may be a potential novel therapy for improving renal function and limiting renal injury associated with obstructive uropathy.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Riñón/efectos de los fármacos , Riñón/lesiones , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Obstrucción Ureteral/complicaciones , Animales , Riñón/patología , Masculino , Ratas , Ratas Endogámicas Lew , Obstrucción Ureteral/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA