Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Pathogens ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887785

RESUMEN

Children with congenital heart disease have poorer oral health compared with healthy children. Oral diseases, such as dental caries and gingivitis, are associated with the oral microbiome. The objective of this review was to find evidence of differences in the bacterial colonization of the oral cavity of children with congenital heart disease (CHD) versus healthy children. A literature review was conducted according to predetermined criteria, including the need for controlled clinical trials. Half of the 14 studies that met the inclusion criteria reported significant differences in bacterial colonization in children with congenital heart disease. A variety of influencing factors were discussed. There is some evidence for alterations in the oral microflora as a result of physiopathological and treatment-related factors in children with CHD, but additional research is required to validate these findings.

2.
Toxins (Basel) ; 15(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888624

RESUMEN

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. The pore-forming cholesterol-dependent cytolysin (CDC) pneumolysin (PLY) and the physiological metabolite hydrogen peroxide (H2O2) can greatly increase the virulence of pneumococci. Although most studies have focused on the contribution of both virulence factors to the course of pneumococcal infection, it is unknown whether or how H2O2 can affect PLY activity. Of note, S. pneumoniae exploits endogenous H2O2 as an intracellular signalling molecule to modulate the activity of several proteins. Here, we demonstrate that H2O2 negatively affects the haemolytic activity of PLY in a concentration-dependent manner. Prevention of cysteine-dependent sulfenylation upon substitution of the unique and highly conserved cysteine residue to serine in PLY significantly reduces the toxin's susceptibility to H2O2 treatment and completely abolishes the ability of DTT to activate PLY. We also detect a clear gradual correlation between endogenous H2O2 generation and PLY release, with decreased H2O2 production causing a decline in the release of PLY. Comparative transcriptome sequencing analysis of the wild-type S. pneumoniae strain and three mutants impaired in H2O2 production indicates enhanced expression of several genes involved in peptidoglycan (PG) synthesis and in the production of choline-binding proteins (CPBs). One explanation for the impact of H2O2 on PLY release is the observed upregulation of the PG bridge formation alanyltransferases MurM and MurN, which evidentially negatively affect the PLY release. Our findings shed light on the significance of endogenous pneumococcal H2O2 in controlling PLY activity and release.


Asunto(s)
Peróxido de Hidrógeno , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Peróxido de Hidrógeno/metabolismo , Cisteína/metabolismo , Estreptolisinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Biomed Pharmacother ; 167: 115568, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793274

RESUMEN

Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Ratones , Animales , Linfocitos T Reguladores , Faecalibacterium prausnitzii/metabolismo , Células Th17 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colon , Citocinas/metabolismo , Bacterias/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Gut Microbes ; 15(2): 2247019, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37614093

RESUMEN

Dysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn's disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn's disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Adolescente , Adulto , Niño , Enfermedad de Crohn/terapia , Progresión de la Enfermedad
5.
Front Microbiol ; 13: 1007143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406458

RESUMEN

Previous studies have reported that spaceflight specific conditions such as microgravity lead to changes in bacterial physiology and resistance behavior including increased expression of virulence factors, enhanced biofilm formation and decreased susceptibility to antibiotics. To assess if spaceflight induced physiological changes can manifest in human-associated bacteria, we compared three spaceflight relevant Staphylococcus capitis isolates (DSM 111179, ISS; DSM 31028, clean room; DSM 113836; artificial gravity bedrest study) with the type strain (DSM 20326T). We tested the three strains regarding growth, colony morphology, metabolism, fatty acid and polar lipid pattern, biofilm formation, susceptibility to antibiotics and survival in different stress conditions such as treatment with hydrogen peroxide, exposure to desiccation, and irradiation with X-rays and UV-C. Moreover, we sequenced, assembled, and analyzed the genomes of all four strains. Potential genetic determinants for phenotypic differences were investigated by comparative genomics. We found that all four strains show similar metabolic patterns and the same susceptibility to antibiotics. All four strains were considered resistant to fosfomycin. Physiological differences were mainly observed compared to the type strain and minor differences among the other three strains. The ISS isolate and the bedrest study isolate exhibit a strong delayed yellow pigmentation, which is absent in the other two strains. Pigments were extracted and analyzed by UV/Vis spectroscopy showing characteristic carotenoid spectra. The ISS isolate showed the highest growth rate as well as weighted average melting temperature (WAMT) of fatty acids (41.8°C) of all strains. The clean room isolate showed strongest biofilm formation and a high tolerance to desiccation. In general, all strains survived desiccation better in absence of oxygen. There were no differences among the strains regarding radiation tolerance. Phenotypic and genomic differences among the strains observed in this study are not inevitably indicating an increased virulence of the spaceflight isolate. However, the increased growth rate, higher WAMT and colony pigmentation of the spaceflight isolate are relevant phenotypes that require further research within the human spaceflight context. We conclude that combining genetic analysis with classical microbiological methods allows the detailed assessment of the potential threat of bacteria in highly regulated and extreme environments such as spaceflight environments.

6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361697

RESUMEN

The human central nervous system (CNS) is separated from the blood by distinct cellular barriers, including the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CFS) barrier (BCSFB). Whereas at the center of the BBB are the endothelial cells of the brain capillaries, the BCSFB is formed by the epithelium of the choroid plexus. Invasion of cells of either the BBB or the BCSFB is a potential first step during CNS entry by the Gram-positive bacterium Listeria monocytogenes (Lm). Lm possesses several virulence factors mediating host cell entry, such as the internalin protein family-including internalin (InlA), which binds E-cadherin (Ecad) on the surface of target cells, and internalin B (InlB)-interacting with the host cell receptor tyrosine kinase Met. A further family member is internalin (InlF), which targets the intermediate filament protein vimentin. Whereas InlF has been shown to play a role during brain invasion at the BBB, its function during infection at the BCSFB is not known. We use human brain microvascular endothelial cells (HBMEC) and human choroid plexus epithelial papilloma (HIBCPP) cells to investigate the roles of InlF and vimentin during CNS invasion by Lm. Whereas HBMEC present intracellular and surface vimentin (besides Met), HIBCPP cells do not express vimentin (except Met and Ecad). Treatment with the surface vimentin modulator withaferin A (WitA) inhibited invasion of Lm into HBMEC, but not HIBCPP cells. Invasion of Lm into HBMEC and HIBCPP cells is, however, independent of InlF, since a deletion mutant of Lm lacking InlF did not display reduced invasion rates.


Asunto(s)
Listeria monocytogenes , Humanos , Barrera Hematoencefálica/metabolismo , Vimentina/metabolismo , Filamentos Intermedios/metabolismo , Células Endoteliales/metabolismo , Proteínas Bacterianas/metabolismo
7.
Microbiome ; 10(1): 158, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171625

RESUMEN

BACKGROUND: The intestinal microbiota fundamentally guides the development of a normal intestinal physiology, the education, and functioning of the mucosal immune system. The Citrobacter rodentium-carrier model in germ-free (GF) mice is suitable to study the influence of selected microbes on an otherwise blunted immune response in the absence of intestinal commensals. RESULTS: Here, we describe that colonization of adult carrier mice with 14 selected commensal microbes (OMM12 + MC2) was sufficient to reestablish the host immune response to enteric pathogens; this conversion was facilitated by maturation and activation of the intestinal blood vessel system and the step- and timewise stimulation of innate and adaptive immunity. While the immature colon of C. rodentium-infected GF mice did not allow sufficient extravasation of neutrophils into the gut lumen, colonization with OMM12 + MC2 commensals initiated the expansion and activation of the visceral vascular system enabling granulocyte transmigration into the gut lumen for effective pathogen elimination. CONCLUSIONS: Consortium modeling revealed that the addition of two facultative anaerobes to the OMM12 community was essential to further progress the intestinal development. Moreover, this study demonstrates the therapeutic value of a defined consortium to promote intestinal maturation and immunity even in adult organisms. Video Abstract.


Asunto(s)
Citrobacter rodentium , Mucosa Intestinal , Animales , Citrobacter rodentium/fisiología , Sistema Inmunológico , Inmunocompetencia , Intestinos , Ratones
8.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35743234

RESUMEN

The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut-lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut-lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Pulmonares , Microbiota , Animales , Niño , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/fisiología , Humanos , Pulmón
9.
Viruses ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35336926

RESUMEN

Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5'-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5'-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.


Asunto(s)
Antineoplásicos , Coronavirus , Regiones no Traducidas 5' , Antineoplásicos/farmacología , Antivirales/farmacología , Constricción , Humanos
10.
Pathogens ; 11(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35056026

RESUMEN

Necrotizing fasciitis of the head and neck is a rare, very severe disease, which, in most cases, originates from odontogenic infections and frequently ends with the death of the patient. Rapid surgical intervention in combination with a preferably pathogen-specific antibiotic therapy can ensure patients' survival. The question arises concerning which pathogens are causative for the necrotizing course of odontogenic inflammations. Experimental 16S-rRNA gene analysis with next-generation sequencing and bioinformatics was used to identify the microbiome of patients treated with an odontogenic necrotizing infection and compared to the result of the routine culture. Three of four patients survived the severe infection, and one patient died due to septic multiorgan failure. Microbiome determination revealed findings comparable to typical odontogenic abscesses. A specific pathogen which could be causative for the necrotizing course could not be identified. Early diagnosis and rapid surgical intervention and a preferably pathogen-specific antibiotic therapy, also covering the anaerobic spectrum of odontogenic infections, are the treatments of choice. The 16S-rRNA gene analysis detected significantly more bacteria than conventional methods; therefore, molecular methods should become a part of routine diagnostics in medical microbiology.

11.
Cell Tissue Res ; 390(1): 35-49, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34762185

RESUMEN

The conducting airways are lined by distinct cell types, comprising basal, secretory, ciliated, and rare cells, including ionocytes, solitary cholinergic chemosensory cells, and solitary and clustered (neuroepithelial bodies) neuroendocrine cells. Airway neuroendocrine cells are in clinical focus since they can give rise to small cell lung cancer. They have been implicated in diverse functions including mechanosensation, chemosensation, and regeneration, and were recently identified as regulators of type 2 immune responses via the release of the neuropeptide calcitonin gene-related peptide (CGRP). We here assessed the expression of the chemokine CXCL13 (B cell attracting chemokine) by these cells by RT-PCR, in silico analysis of publicly available sequencing data sets, immunohistochemistry, and immuno-electron microscopy. We identify a phenotype of neuroendocrine cells in the naïve mouse, producing the chemokine CXCL13 predominantly in solitary neuroendocrine cells of the tracheal epithelium (approx. 70% CXCL13+) and, to a lesser extent, in the solitary neuroendocrine cells and neuroepithelial bodies of the intrapulmonary bronchial epithelium (< 10% CXCL13+). In silico analysis of published sequencing data of murine tracheal epithelial cells was consistent with the results obtained by immunohistochemistry as it revealed that neuroendocrine cells are the major source of Cxcl13-mRNA, which was expressed by 68-79% of neuroendocrine cells. An unbiased scRNA-seq data analysis of overall gene expression did not yield subclusters of neuroendocrine cells. Our observation demonstrates phenotypic heterogeneity of airway neuroendocrine cells and points towards a putative immunoregulatory role of these cells in bronchial-associated lymphoid tissue formation and B cell homeostasis.


Asunto(s)
Quimiocina CXCL13 , Células Neuroendocrinas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colinérgicos , Células Epiteliales/metabolismo , Pulmón/metabolismo , Ratones , Células Neuroendocrinas/metabolismo , ARN Mensajero/genética , Tráquea
12.
Biology (Basel) ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571794

RESUMEN

Odontogenic abscesses are usually caused by bacteria of the oral microbiome. However, the diagnostic culture of these bacteria is often prone to errors and sometimes fails completely due to the fastidiousness of the relevant bacterial species. The question arises whether additional pathogen diagnostics using molecular methods provide additional benefits for diagnostics and therapy. Experimental 16S rRNA gene analysis with next-generation sequencing (NGS) and bioinformatics was used to identify the microbiome of the pus in patients with severe odontogenic infections and was compared to the result of standard diagnostic culture. The pus microbiome was determined in 48 hospitalized patients with a severe odontogenic abscess in addition to standard cultural pathogen detection. Cultural detection was possible in 41 (85.42%) of 48 patients, while a pus-microbiome could be determined in all cases. The microbiomes showed polymicrobial infections in 46 (95.83%) cases, while the picture of a mono-infection occurred only twice (4.17%). In most cases, a predominantly anaerobic spectrum with an abundance of bacteria was found in the pus-microbiome, while culture detected mainly Streptococcus, Staphylococcus, and Prevotella spp. The determination of the microbiome of odontogenic abscesses clearly shows a higher number of bacteria and a significantly higher proportion of anaerobes than classical cultural methods. The 16S rRNA gene analysis detects considerably more bacteria than conventional cultural methods, even in culture-negative samples. Molecular methods should be implemented as standards in medical microbiology diagnostics, particularly for the detection of polymicrobial infections with a predominance of anaerobic bacteria.

13.
Microorganisms ; 9(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576799

RESUMEN

Oral bacteria have been associated with several systemic diseases. Moreover, the abundance of bacteria associated with caries has been found to be higher in patients with congenital heart disease (CHD) than in healthy control groups (HCGs). Therefore, this study aimed to evaluate the dental microbiota in children with CHD compared to a HCG. The aim was to describe and compare the carious microbiome regarding the composition, diversity, and taxonomic patterns in these two groups. Twenty children with CHD and a HCG aged between two and six years participated. All of them were affected by early childhood caries. Microbiome profiling indicated that Fusobacterium, Prevotella, Capnocytophaga, and Oribacterium were more abundant in the CHD group, whereas Lactobacillus and Rothia were predominant in the HCG. Furthermore, microbiome analysis revealed three distinct clusters for the CHD and HCG samples. In the first cluster, we found mainly the genera Lactobacillus and Coriobacteriaceae. The second cluster showed a higher relative abundance of the genus Actinomyces and a more diverse composition consisting of more genera with a smaller relative lot. The third cluster was characterized by two genera, Streptococcus and Veillonella. These data can help us to understand the oral microbial community structures involved in caries and endodontic infections of pre-school children in relation to the general health of these high-risk patients.

14.
Nat Commun ; 12(1): 5536, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545074

RESUMEN

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Asunto(s)
Estrés del Retículo Endoplásmico , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Animales , Autofagia/efectos de los fármacos , Bronquios/patología , COVID-19/patología , COVID-19/virología , Diferenciación Celular/efectos de los fármacos , Extractos Celulares , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Coronavirus Humano 229E/fisiología , Regulación hacia Abajo/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Proteínas de Choque Térmico/metabolismo , Humanos , Macrólidos/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
15.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445403

RESUMEN

Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.


Asunto(s)
Bacterias/clasificación , Colitis/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Microbiota/efectos de los fármacos , Silicatos/administración & dosificación , Administración Oral , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Peso Corporal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , ADN Bacteriano/genética , ADN Ribosómico/genética , Heces/microbiología , Masculino , Ratones Endogámicos BALB C , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Silicatos/farmacología , Proteínas de Uniones Estrechas/metabolismo , Resultado del Tratamiento
16.
Microorganisms ; 9(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208451

RESUMEN

Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not result in any bacterial growth. Furthermore, various authors found completely different bacterial spectra in odontogenic abscesses. Experimental 16S rRNA gene next-generation sequencing analysis was used to identify the microbiome of the saliva and the pus in patients with a severe odontogenic infection. The microbiome of the saliva and the pus was determined for 50 patients with a severe odontogenic abscess. Perimandibular and submandibular abscesses were the most commonly observed diseases at 15 (30%) patients each. Polymicrobial infections were observed in 48 (96%) cases, while the picture of a mono-infection only occurred twice (4%). On average, 31.44 (±12.09) bacterial genera were detected in the pus and 41.32 (±9.00) in the saliva. In most cases, a predominantly anaerobic bacterial spectrum was found in the pus, while saliva showed a similar oral microbiome to healthy individuals. In the majority of cases, odontogenic infections are polymicrobial. Our results indicate that these are mainly caused by anaerobic bacterial strains and that aerobic and facultative anaerobe bacteria seem to play a more minor role than previously described by other authors. The 16S rRNA gene analysis detects significantly more bacteria than conventional methods and molecular methods should therefore become a part of routine diagnostics in medical microbiology.

17.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33864460

RESUMEN

Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.


Asunto(s)
Dihidroxiacetona/metabolismo , Enterococcus faecium/enzimología , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecium/genética , Glicerolfosfato Deshidrogenasa/genética , Operón
18.
BMC Genomics ; 22(1): 195, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736596

RESUMEN

BACKGROUND: The technology of single cell RNA sequencing (scRNA-seq) has gained massively in popularity as it allows unprecedented insights into cellular heterogeneity as well as identification and characterization of (sub-)cellular populations. Furthermore, scRNA-seq is almost ubiquitously applicable in medical and biological research. However, these new opportunities are accompanied by additional challenges for researchers regarding data analysis, as advanced technical expertise is required in using bioinformatic software. RESULTS: Here we present WASP, a software for the processing of Drop-Seq-based scRNA-Seq data. Our software facilitates the initial processing of raw reads generated with the ddSEQ or 10x protocol and generates demultiplexed gene expression matrices including quality metrics. The processing pipeline is realized as a Snakemake workflow, while an R Shiny application is provided for interactive result visualization. WASP supports comprehensive analysis of gene expression matrices, including detection of differentially expressed genes, clustering of cellular populations and interactive graphical visualization of the results. The R Shiny application can be used with gene expression matrices generated by the WASP pipeline, as well as with externally provided data from other sources. CONCLUSIONS: With WASP we provide an intuitive and easy-to-use tool to process and explore scRNA-seq data. To the best of our knowledge, it is currently the only freely available software package that combines pre- and post-processing of ddSEQ- and 10x-based data. Due to its modular design, it is possible to use any gene expression matrix with WASP's post-processing R Shiny application. To simplify usage, WASP is provided as a Docker container. Alternatively, pre-processing can be accomplished via Conda, and a standalone version for Windows is available for post-processing, requiring only a web browser.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Biología Computacional , Perfilación de la Expresión Génica , RNA-Seq , Análisis de Secuencia de ARN
19.
Clin Oral Investig ; 25(5): 2689-2703, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32949257

RESUMEN

OBJECTIVES: We aimed at the high-resolution examination of the oral microbiome depending on oil pulling, compared it with saline pulling, and analyzed whether the method is capable of reducing the overall microbial burden of the oral cavity. MATERIALS AND METHODS: The study was a cohort study with three healthy subjects. Oil pulling samples, saline pulling samples, and saliva samples were microscoped and cultured under microaerophilic and anaerobic conditions; colony-forming units were counted; and cultivated bacteria were identified employing MALDI-TOF MS. The oral microbiomes (saliva) and the microbiota incorporated in oil and saline pulling samples were determined in toto by using 16S rDNA next-generation sequencing (NGS) and bioinformatics. RESULTS: Microscopy revealed that oral epithelial cells are ensheathed with distinct oil droplets during oil pulling. Oil pulling induced a higher production of saliva and the oil/saliva emulsion contained more bacteria than saline pulling samples. Oil pulling resulted in a significant and transient reduction of the overall microbial burden in comparison to saliva examined prior to and after pulling. Both oil and saline pulling samples mirrored the individual oral microbiomes in saliva. CONCLUSIONS: Within the limitations of this pilot study, it might be concluded that oil pulling is able to reduce the overall microbial burden of the oral cavity transiently and the microbiota in oil pulling samples are representative to the oral microbiome. CLINICAL RELEVANCE: Within the limitations of this pilot study, it might be concluded that oil pulling can be considered as an enlargement of standard oral hygiene techniques since it has the characteristic of an oral massage, enwrapping epithelial cells carrying bacteria in oil vesicles and reaching almost all unique habitats in oral cavity.


Asunto(s)
Microbiota , Estudios de Cohortes , Voluntarios Sanos , Humanos , Boca , Proyectos Piloto , ARN Ribosómico 16S , Saliva , Aceite de Girasol
20.
Microbiol Resour Announc ; 9(43)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093052

RESUMEN

Here, we report the high-quality complete genome sequence of Staphylococcus aureus EDCC 5398, which was isolated from a patient with implant-associated bone infection. The assembled genome consists of 2,843,534 bp, with a G+C content of 33%; it has 2,739 coding sequences, belongs to sequence type 22, and contains mecA and balz genes, which contribute to methicillin resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA