Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 201: 117301, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34139512

RESUMEN

Nearly half a billion people living in Indian cities receive their drinking water from an intermittent water supply (IWS), which can be associated with degraded water quality and risk of waterborne disease. The municipal water supply in Nagpur, India is transitioning from intermittent to continuous supply in phases. We conducted cross-sectional sampling to compare microbial water quality under IWS and continuous water supply (CWS) in Nagpur. In 2015 and 2017, we collected 146 grab samples and 90 large-volume dead-end ultrafiltration (DEUF) samples (total volume: 6,925 liters). In addition to measuring traditional water quality parameters, we also assayed DEUF samples by droplet digital PCR (ddPCR) for waterborne pathogen gene targets. At household taps served by IWS, we detected targets from enterotoxigenic E. coli, Shigella spp./enteroinvasive E. coli, norovirus GI and GII, adenovirus A-F, Cryptosporidium spp., and Giardia duodenalis. We observed a significant increase in the proportion of grab samples positive for culturable E. coli (p = 0.0007) and DEUF concentrates positive for waterborne pathogen gene targets (p = 0.0098) at household taps served by IWS compared to those served by CWS. IWS continues to be associated with fecal contamination, and, in this study, with increased prevalence of molecular evidence of waterborne pathogens. These findings add mounting evidence that, despite the presence of piped on premise infrastructure, IWS is less likely to meet the requirements for safely-managed drinking water as defined by the Sustainable Development Goals. Importantly, these findings demonstrate the transition from IWS to CWS in Nagpur is yielding meaningful improvements in microbial water quality.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Potable , Ciudades , Estudios Transversales , Escherichia coli , Humanos , India , Mejoramiento de la Calidad , Microbiología del Agua , Calidad del Agua , Abastecimiento de Agua
2.
Water Sci Technol ; 83(3): 543-555, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33600360

RESUMEN

Selecting appropriate reuse for treated wastewater is a challenge. The current investigation outlines the utilization of quantitative microbial risk assessment (QMRA) to assist Effluent Treatment Plant (ETP) management to determine the best-possible reuse of treated wastewater from 11 ETPs in Delhi. Four representative pathogens: pathogenic Escherichia coli spp., Salmonella spp., Cryptosporidium spp. and Giardia spp. were selected to characterize microbial water quality. Reuse options selected based on the survey and interaction with ETP managers include crop irrigation, garden irrigation, toilet flush and industrial applications. The probability of infection was characterized for two exposure groups: workers and children. Water quality monitoring indicates the occurrence of pathogenic E. coli spp. (100%), Salmonella spp. (63%), Cryptosporidium spp. (81%) and Giardia spp. (45%) in the treated wastewater. QMRA reveals the annual median-probability of infection above acceptable limits for pathogenic E. coli spp., Cryptosporidium spp. and Salmonella spp. The probabilities of Giardia-associated infections were low. Adults showed a 1.24 times higher probability of infection compared to children. Sensitivity analysis indicated pathogen concentration as the most critical factor. The study highlights that the existing plans for chlorination-based treatment technology may prove insufficient in reducing the risk for selected reuse options; but, alternate on-site control measures and up-grading water reuse protocol may be effective.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Niño , Escherichia coli , Humanos , India , Medición de Riesgo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...