Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400856

RESUMEN

Cancer remains one of the leading causes of death worldwide. The unclear molecular mechanisms and complex in vivo microenvironment of tumors make it difficult to clarify the nature of cancer and develop effective treatments. Therefore, the development of new methods to effectively treat cancer is urgently needed and of great importance. Organ-on-a-chip (OoC) systems could be the breakthrough technology sought by the pharmaceutical industry to address ever-increasing research and development costs. The past decade has seen significant advances in the spatial modeling of cancer therapeutics related to OoC technology, improving physiological exposition criteria. This article aims to summarize the latest achievements and research results of cancer cell treatment simulated in a 3D microenvironment using OoC technology. To this end, we will first discuss the OoC system in detail and then demonstrate the latest findings of the cancer cell treatment study by Ooc and how this technique can potentially optimize better modeling of the tumor. The prospects of OoC systems in the treatment of cancer cells and their advantages and limitations are also among the other points discussed in this study.

2.
Strahlenther Onkol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367110

RESUMEN

Radiotherapy (RT) is a gold standard cancer treatment worldwide. However, RT has limitations and many side effects. Nanoparticles (NPs) have exclusive properties that allow them to be used in cancer therapy. Consequently, the combination of NP and RT opens up a new frontier in cancer treatment. Among NPs, gold nanoparticles (GNPs) are the most extensively studied and are considered ideal radiosensitizers for radiotherapy due to their unique physicochemical properties and high X­ray absorption. This review analyzes the various roles of NPs as radiosensitizers in radiotherapy of glioblastoma (GBS), prostate cancer, and breast cancer and summarizes recent advances. Furthermore, the underlying mechanisms of NP radiosensitization, including physical, chemical, and biological mechanisms, are discussed, which may provide new directions for next-generation GNP optimization and clinical transformation.

3.
Cell Biochem Funct ; 42(1): e3922, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269506

RESUMEN

Sodium-glucose co-transporter-2 (SGLT2) inhibitors, known as Gliflozins, are a class of Glucose-lowering drugs in adults with type 2 diabetes (T2D) that induce glucosuria by blocking SGLT2 co-transporters in the proximal tubules. Several lines of evidence suggest that SGLT2 inhibitors regulate multiple mechanisms associated with the regulation of varying cellular pathways. The 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway plays an important role in metabolic homeostasis by influencing cellular processes. Recently, it has been shown that SGLT2 inhibitors can affect the AMPK pathway in differing physiological and pathological ways, resulting in kidney, intestinal, cardiovascular, and liver protective effects. Additionally, they have therapeutic effects on nonalcoholic fatty liver disease and diabetes mellitus-associated complications. In this review, we summarize the results of studies of AMPK-associated therapeutic effects of SGLT2 inhibitors in different organelle functions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Proteínas Quinasas Activadas por AMP , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transportador 2 de Sodio-Glucosa , Glucosa , Tareas del Hogar
4.
Pathol Res Pract ; 251: 154845, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37839359

RESUMEN

Cancer is one of the most common diseases in the world, and various genetic and environmental factors play a key role in its development. Breast cancer is one of the most common and deadly cancers in women. Exosomes are extracellular vesicles (EVs) with an average size of about 100 nm that contain lipids, proteins, microRNAs (miRNAs), and genetic factors and play a significant role in cell signaling, communication, tumorigenesis, and drug resistance. miRNAs are RNAs with about 22 nucleotides, which are synthesized by RNA polymerase and are involved in regulating gene expression, as well as the prevention or progression of cancer. Many studies have indicated the connection between miRNAs and exosomes. According to their findings, it seems that circulating exosomal miRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Therefore, given the importance of miRNAs in exosomes, the goal of the present study was to clarify the relationship between miRNAs in exosomes and the role they play as biomarkers in breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , Exosomas , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...