Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Contact (Thousand Oaks) ; 7: 25152564241229273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362008

RESUMEN

Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.

2.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260521

RESUMEN

Maintenance of the mitochondrial inner membrane potential (ΔΨM) is critical for many aspects of mitochondrial function, including mitochondrial protein import and ion homeostasis. While ΔΨM loss and its consequences are well studied, little is known about the effects of increased ΔΨM. In this study, we used cells deleted of ATPIF1, a natural inhibitor of the hydrolytic activity of the ATP synthase, as a genetic model of mitochondrial hyperpolarization. Our data show that chronic ΔΨM increase leads to nuclear DNA hypermethylation, regulating transcription of mitochondria, carbohydrate and lipid metabolism genes. Surprisingly, remodeling of phospholipids, but not metabolites or redox changes, mechanistically links the ΔΨM to the epigenome. These changes were also observed upon chemical exposures and reversed by decreasing the ΔΨM, highlighting them as hallmark adaptations to chronic mitochondrial hyperpolarization. Our results reveal the ΔΨM as the upstream signal conveying the mitochondrial status to the epigenome to regulate cellular biology, providing a new framework for how mitochondria can influence health outcomes in the absence of canonical dysfunction.

3.
EMBO Mol Med ; 15(8): e16251, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37431815

RESUMEN

Gal et al address the issues raised by Gerber et al and reiterate that patients in their study showed decreased Misato homolog 1 (MSTO1) mRNA and protein levels, but also confirm finding of Gerber et al that the mutation is in MSTO2p pseudogene. Whether MSTO2p variant contributes to the observed decrease in MSTO1 levels in patients remains unclear.


Asunto(s)
Proteínas del Citoesqueleto , Atrofias Ópticas Hereditarias , Humanos , Proteínas del Citoesqueleto/genética , Mutación , Proteínas de Ciclo Celular/genética , Linaje
5.
EMBO J ; 42(11): e114129, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154272

RESUMEN

How mitochondrial shape and substrate-specific metabolism are related has been a difficult question to address. Here, new work by Ngo et al (2023) reports that mitochondrial shape-long versus fragmented-determines the activity of ß-oxidation of long-chain fatty acids, supporting a novel role for mitochondrial fission products as ß-oxidation hubs.


Asunto(s)
Ácidos Grasos , Mitocondrias , Mitocondrias/metabolismo , Oxidación-Reducción , Ácidos Grasos/metabolismo , Dinámicas Mitocondriales
6.
Proc Natl Acad Sci U S A ; 120(19): e2218999120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126688

RESUMEN

Mitochondrial Ca2+ uptake is mediated by the mitochondrial uniporter complex (mtCU) that includes a tetramer of the pore-forming subunit, MCU, a scaffold protein, EMRE, and the EF-hand regulatory subunit, MICU1 either homodimerized or heterodimerized with MICU2/3. MICU1 has been proposed to regulate Ca2+ uptake via the mtCU by physically occluding the pore and preventing Ca2+ flux at resting cytoplasmic [Ca2+] (free calcium concentration) and to increase Ca2+ flux at high [Ca2+] due to cooperative activation of MICUs EF-hands. However, mtCU and MICU1 functioning when its EF-hands are unoccupied by Ca2+ is poorly studied due to technical limitations. To overcome this barrier, we have studied the mtCU in divalent-free conditions by assessing the Ru265-sensitive Na+ influx using fluorescence-based measurement of mitochondrial matrix [Na+] (free sodium concentration) rise and the ensuing depolarization and swelling. We show an increase in all these measures of Na+ uptake in MICU1KO cells as compared to wild-type (WT) and rescued MICU1KO HEK cells. However, mitochondria in WT cells and MICU1 stable-rescued cells still allowed some Ru265-sensitive Na+ influx that was prevented by MICU1 in excess upon acute overexpression. Thus, MICU1 restricts the cation flux across the mtCU in the absence of Ca2+, but even in cells with high endogenous MICU1 expression such as HEK, some mtCU seem to lack MICU1-dependent gating. We also show rearrangement of the mtCU and altered number of functional channels in MICU1KO and different rescues, and loss of MICU1 during mitoplast preparation, that together might have obscured the pore-blocking function of MICU1 in divalent-free conditions in previous studies.


Asunto(s)
Canales de Calcio , Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo
7.
Cell Chem Biol ; 30(6): 606-617.e4, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244260

RESUMEN

Mitochondrial Ca2+ homeostasis loses its control in many diseases and might provide therapeutic targets. Mitochondrial Ca2+ uptake is mediated by the uniporter channel (mtCU), formed by MCU and is regulated by the Ca2+-sensing gatekeeper, MICU1, which shows tissue-specific stoichiometry. An important gap in knowledge is the molecular mechanism of the mtCU activators and inhibitors. We report that all pharmacological activators of the mtCU (spermine, kaempferol, SB202190) act in a MICU1-dependent manner, likely by binding to MICU1 and preventing MICU1's gatekeeping activity. These agents also sensitized the mtCU to inhibition by Ru265 and enhanced the Mn2+-induced cytotoxicity as previously seen with MICU1 deletion. Thus, MCU gating by MICU1 is the target of mtCU agonists and is a barrier for inhibitors like RuRed/Ru360/Ru265. The varying MICU1:MCU ratios result in different outcomes for both mtCU agonists and antagonists in different tissues, which is relevant for both pre-clinical research and therapeutic efforts.


Asunto(s)
Canales de Calcio , Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Calcio/metabolismo
8.
Sci Signal ; 16(782): eabi8948, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098122

RESUMEN

MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.


Asunto(s)
Membranas Mitocondriales , Proteómica , Ratones , Animales , Membranas Mitocondriales/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Ratones Noqueados , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Mitocondriales/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(12): e2207471120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36927155

RESUMEN

Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in OPA1 lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive. Intriguingly, patients carrying OPA1 GTPase mutations have a higher risk of developing more severe multisystemic symptoms in addition to optic atrophy, suggesting pathogenic contributions for the GTPase and GED domains, respectively. We studied OPA1 GTPase and GED mutations to understand their domain-specific contribution to protein function by analyzing patient-derived cells and gain-of-function paradigms. Mitochondria from OPA1 GTPase (c.870+5G>A and c.889C>T) and GED (c.2713C>T and c.2818+5G>A) mutants display distinct aberrant cristae ultrastructure. While all OPA1 mutants inhibited mitochondrial fusion, some GTPase mutants resulted in elongated mitochondria, suggesting fission inhibition. We show that the GED is dispensable for fusion and OPA1 oligomer formation but necessary for GTPase activity. Finally, splicing defect mutants displayed a posttranslational haploinsufficiency-like phenotype but retained domain-specific dysfunctions. Thus, OPA1 domain-specific mutants result in distinct impairments in mitochondrial dynamics, providing insight into OPA1 function and its contribution to ADOA pathogenesis and severity.


Asunto(s)
Mitocondrias , Atrofia Óptica Autosómica Dominante , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Atrofia Óptica Autosómica Dominante/patología , Mutación
10.
Nat Commun ; 13(1): 6779, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351901

RESUMEN

Endoplasmic reticulum-mitochondria contacts (ERMCs) are restructured in response to changes in cell state. While this restructuring has been implicated as a cause or consequence of pathology in numerous systems, the underlying molecular dynamics are poorly understood. Here, we show means to visualize the capture of motile IP3 receptors (IP3Rs) at ERMCs and document the immediate consequences for calcium signaling and metabolism. IP3Rs are of particular interest because their presence provides a scaffold for ERMCs that mediate local calcium signaling, and their function outside of ERMCs depends on their motility. Unexpectedly, in a cell model with little ERMC Ca2+ coupling, IP3Rs captured at mitochondria promptly mediate Ca2+ transfer, stimulating mitochondrial oxidative metabolism. The Ca2+ transfer does not require linkage with a pore-forming protein in the outer mitochondrial membrane. Thus, motile IP3Rs can traffic in and out of ERMCs, and, when 'parked', mediate calcium signal propagation to the mitochondria, creating a dynamic arrangement that supports local communication.


Asunto(s)
Señalización del Calcio , Mitocondrias , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio/fisiología , Mitocondrias/metabolismo , Respiración de la Célula , Calcio/metabolismo , Estrés Oxidativo
11.
Cell Calcium ; 105: 102618, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35779476

RESUMEN

Heart failure (HF) is a leading cause of hospitalization and mortality worldwide. Yet, there is still limited knowledge on the underlying molecular mechanisms, because human tissue for research is scarce, and data obtained in animal models is not directly applicable to humans. Thus, studies of human heart specimen are of particular relevance. Mitochondrial Ca2+ handling is an emerging topic in HF progression because its regulation is central to the energy supply of the heart contractions as well as to avoiding mitochondrial Ca2+ overload and the ensuing cell death induction. Notably, animal studies have already linked impaired mitochondrial Ca2+ transport to the initiation/progression of HF. Mitochondrial Ca2+ uptake is mediated by the Ca2+uniporter (mtCU) that consists of the MCU pore under tight control by the Ca2+-sensing MICU1 and MICU2. The MICU1/MCU protein ratio has been validated as a predictor of the mitochondrial Ca2+ uptake phenotype. We here determined for the first time the protein composition of the mtCU in the human heart. The two regulators MICU1 and MICU2, were elevated in the failing human heart versus non-failing controls, while the MCU density was unchanged. Furthermore, the MICU1/MCU ratio was significantly elevated in the failing human hearts, suggesting altered gating of the MCU by MICU1 and MICU2. Based on a small cohort of patients, the decrease in the cardiac contractile function (ejection fraction) seems to correlate with the increase in MICU1/MCU ratio. Our findings therefore indicate a possible role for adaptive/maladaptive changes in the mtCU composition in the initiation/progression of human HF in humans and point to a potential therapeutic target at the level of the MICU1-dependent regulation of the mtCU.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Transporte de Membrana Mitocondrial , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
12.
Sci Adv ; 8(11): eabj4716, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302860

RESUMEN

Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility to mitochondrial Ca2+ overload-induced excitotoxic insults and cell death in MICU1-KO neurons and MICU1-deficient patient-derived cells, which can be blunted by inhibiting the mitochondrial permeability transition pore. Thus, our study identifies altered neuronal mitochondrial Ca2+ homeostasis as causative in the clinical symptoms of MICU1-deficient patients and highlights potential therapeutic targets.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Transporte de Membrana Mitocondrial , Enfermedades Neurodegenerativas , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
13.
Free Radic Biol Med ; 181: 241-250, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35158029

RESUMEN

Many unanswered questions of physiology and medicine require in vivo studies of cellular processes in murine models. These processes commonly depend on intracellular Ca2+ and redox alterations. Fluorescent dyes have succeeded in real-time intracellular monitoring of Ca2+, redox and the different Reactive Oxygen Species (ROS) in single cells, but have seldomly been applied in vivo. The advance in Fluorescent Protein (FP) technology has created alternative tools for the same task, which can be delivered with viruses or genomic integration strategies into mice. With the availability of several color options for both Ca2+ and redox reporting FP, multiparameter measurements have also become feasible: measuring different species, and the same parameter at different locations using organelle-specific targeting sequences at the same time. We, here, focus on mice with genomic integration of Ca2+ and redox reporters, provide a list of the available models and summarize the strategies of their generation and utilization. We also describe a novel Calcium DoubleSpy mouse model that conditionally expresses both RCaMP in the cytoplasm and GEM-GECO1 in the mitochondrial matrix, allowing the study of mitochondrial Ca2+ related physiology and pathogenesis simultaneously in two distinct intracellular compartments.


Asunto(s)
Calcio , Mitocondrias , Animales , Calcio/metabolismo , Señalización del Calcio , Colorantes Fluorescentes/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
14.
EMBO J ; 41(8): e108272, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35211994

RESUMEN

Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug-resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient-matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER-mitochondria-associated membranes (MAMs; ER-mitochondria contacts, ERMCs) in therapy-resistant cells, and genetically or biochemically reducing MAMs in therapy-sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER-mitochondria-associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.


Asunto(s)
Mitocondrias , Neuroblastoma , Apoptosis , Ceramidas , Resistencia a Múltiples Medicamentos , Humanos , Membranas Mitocondriales , Neuroblastoma/tratamiento farmacológico
15.
STAR Protoc ; 3(1): 101119, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35098166

RESUMEN

This protocol describes how to visualize, detect, and analyze redox signals (oxidative bursts) at the ER-mitochondrial interface. It uses drug-inducible crosslinking to target the genetically encoded glutathione redox sensor Grx1roGFP2 to organellar contact sites to measure local redox changes associated with transient depolarizations of the mitochondrial membrane potential (flickers). The strategy allows imaging of the oxidized to reduced glutathione ratio (GSSG:GSH) in subcellular regions below the diffraction limit with good temporal resolution and minimum phototoxicity. Moreover, the strategy also applies to diverse parameters including pH, H2O2, and Ca2+. For complete details on the use and execution of this profile, please refer to Booth et al. (2016) and Booth et al. (2021).


Asunto(s)
Imagen Óptica/métodos , Orgánulos/metabolismo , Transducción de Señal , Células Hep G2 , Humanos , Cinética , Oxidación-Reducción
16.
Infect Immun ; 90(2): e0055121, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871043

RESUMEN

Neutrophils simultaneously restrict Staphylococcus aureus dissemination and facilitate bactericidal activity during infection through the formation of neutrophil extracellular traps (NETs). Neutrophils that produce higher levels of mitochondrial superoxide undergo enhanced terminal NET formation (suicidal NETosis) in response to S. aureus; however, mechanisms regulating mitochondrial homeostasis upstream of neutrophil antibacterial processes are not fully resolved. Here, we demonstrate that mitochondrial calcium uptake 1 (MICU1)-deficient (MICU1-/-) neutrophils accumulate higher levels of calcium and iron within the mitochondria in a mitochondrial calcium uniporter (MCU)-dependent manner. Corresponding with increased ion flux through the MCU, mitochondrial superoxide production is elevated, thereby increasing the propensity for MICU1-/- neutrophils to undergo suicidal NETosis rather than primary degranulation in response to S. aureus. Increased NET formation augments macrophage killing of bacterial pathogens. Similarly, MICU1-/- neutrophils alone are not more antibacterial toward S. aureus, but rather, enhanced suicidal NETosis by MICU1-/- neutrophils facilitates increased bactericidal activity in the presence of macrophages. Similarly, mice with a deficiency in MICU1 restricted to cells expressing LysM exhibit lower bacterial burdens in the heart with increased survival during systemic S. aureus infection. Coinciding with the decrease in S. aureus burdens, MICU1-/- neutrophils in the heart produce higher levels of mitochondrial superoxide and undergo enhanced suicidal NETosis. These results demonstrate that ion flux by the MCU affects the antibacterial function of neutrophils during S. aureus infection.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Antibacterianos , Calcio/metabolismo , Canales de Calcio , Proteínas de Unión al Calcio , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Neutrófilos/metabolismo , Staphylococcus aureus/metabolismo , Superóxidos
18.
Mol Cell ; 81(18): 3866-3876.e2, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34352204

RESUMEN

The emerging role of mitochondria as signaling organelles raises the question of whether individual mitochondria can initiate heterotypic communication with neighboring organelles. Using fluorescent probes targeted to the endoplasmic-reticulum-mitochondrial interface, we demonstrate that single mitochondria generate oxidative bursts, rapid redox oscillations, confined to the nanoscale environment of the interorganellar contact sites. Using probes fused to inositol 1,4,5-trisphosphate receptors (IP3Rs), we show that Ca2+ channels directly sense oxidative bursts and respond with Ca2+ transients adjacent to active mitochondria. Application of specific mitochondrial stressors or apoptotic stimuli dramatically increases the frequency and amplitude of the oxidative bursts by enhancing transient permeability transition pore openings. Conversely, blocking interface Ca2+ transport via elimination of IP3Rs or mitochondrial calcium uniporter channels suppresses ER-mitochondrial Ca2+ feedback and cell death. Thus, single mitochondria initiate local retrograde signaling by miniature oxidative bursts and, upon metabolic or apoptotic stress, may also amplify signals to the rest of the cell.


Asunto(s)
Mitocondrias/metabolismo , Transporte de Proteínas/fisiología , Estallido Respiratorio/fisiología , Calcio/metabolismo , Canales de Calcio , Señalización del Calcio/fisiología , Permeabilidad de la Membrana Celular/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Células HEK293 , Células Hep G2 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Estallido Respiratorio/genética , Análisis de la Célula Individual/métodos
19.
Neuropathol Appl Neurobiol ; 47(6): 840-855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33428302

RESUMEN

AIMS: MICU1 encodes the gatekeeper of the mitochondrial Ca2+ uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology. METHODS: Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca2+ transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans. RESULTS: We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca2+ transport and proteomic studies on lymphoblastoid cells revealed that the [Ca2+ ] threshold and the cooperative activation of mitochondrial Ca2+ uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca2+ homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms. CONCLUSIONS: Our findings (i) link dysregulation of mitochondrial Ca2+ uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Calcio/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades Musculares/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Musculares/patología , Proteómica
20.
Front Cell Dev Biol ; 9: 774108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047497

RESUMEN

Autosomal Dominant Optic Atrophy (ADOA), a disease that causes blindness and other neurological disorders, is linked to OPA1 mutations. OPA1, dependent on its GTPase and GED domains, governs inner mitochondrial membrane (IMM) fusion and cristae organization, which are central to oxidative metabolism. Mitochondrial dynamics and IMM organization have also been implicated in Ca2+ homeostasis and signaling but the specific involvements of OPA1 in Ca2+ dynamics remain to be established. Here we studied the possible outcomes of OPA1 and its ADOA-linked mutations in Ca2+ homeostasis using rescue and overexpression strategies in Opa1-deficient and wild-type murine embryonic fibroblasts (MEFs), respectively and in human ADOA-derived fibroblasts. MEFs lacking Opa1 required less Ca2+ mobilization from the endoplasmic reticulum (ER) to induce a mitochondrial matrix [Ca2+] rise ([Ca2+]mito). This was associated with closer ER-mitochondria contacts and no significant changes in the mitochondrial calcium uniporter complex. Patient cells carrying OPA1 GTPase or GED domain mutations also exhibited altered Ca2+ homeostasis, and the mutations associated with lower OPA1 levels displayed closer ER-mitochondria gaps. Furthermore, in Opa1 -/- MEF background, we found that acute expression of OPA1 GTPase mutants but no GED mutants, partially restored cytosolic [Ca2+] ([Ca2+]cyto) needed for a prompt [Ca2+]mito rise. Finally, OPA1 mutants' overexpression in WT MEFs disrupted Ca2+ homeostasis, partially recapitulating the observations in ADOA patient cells. Thus, OPA1 modulates functional ER-mitochondria coupling likely through the OPA1 GED domain in Opa1 -/- MEFs. However, the co-existence of WT and mutant forms of OPA1 in patients promotes an imbalance of Ca2+ homeostasis without a domain-specific effect, likely contributing to the overall ADOA progress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA