Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35891050

RESUMEN

The electrochemical detection of heavy metal ions is reported using an inexpensive portable in-house built potentiostat and epitaxial graphene. Monolayer, hydrogen-intercalated quasi-freestanding bilayer, and multilayer epitaxial graphene were each tested as working electrodes before and after modification with an oxygen plasma etch to introduce oxygen chemical groups to the surface. The graphene samples were characterized using X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and van der Pauw Hall measurements. Dose-response curves in seawater were evaluated with added trace levels of four heavy metal salts (CdCl2, CuSO4, HgCl2, and PbCl2), along with detection algorithms based on machine learning and library development for each form of graphene and its oxygen plasma modification. Oxygen plasma-modified, hydrogen-intercalated quasi-freestanding bilayer epitaxial graphene was found to perform best for correctly identifying heavy metals in seawater.


Asunto(s)
Grafito , Metales Pesados , Grafito/química , Hidrógeno , Oxígeno , Sales (Química) , Agua de Mar
2.
Nanotechnology ; 33(37)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35671745

RESUMEN

Electron emission from quasi-freestanding bilayer epitaxial graphene (QFEG) on a silicon carbide substrate is reported, demonstrating emission currents as high as 8.5µA, at ∼200 °C, under 0.3 Torr vacuum. Given the significantly low turn-on temperature of these QFEG devices, ∼150°C, the electron emission is explained by phonon-assisted electron emission, where the acoustic and optical phonons of QFEG causes carrier acceleration and emission. Devices of differing dimensions and shapes are fabricated via a simple and scalable fabrication procedure and tested. Variations in device morphology increase the density of dangling bonds, which can act as electron emission sites. Devices exhibit emission enhancement at increased temperatures, attributed to greater phonon densities. Devices exhibit emission under various test conditions, and a superior design and operating methodology are identified.

3.
Biosens Bioelectron ; 197: 113803, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814034

RESUMEN

We report the rapid detection of SARS-CoV-2 in infected patients (mid-turbinate swabs and exhaled breath aerosol samples) in concentrations as low as 60 copies/mL of the virus in seconds by electrical transduction of the SARS-CoV-2 S1 spike protein antigen via SARS-CoV-2 S1 spike protein antibodies immobilized on bilayer quasi-freestanding epitaxial graphene without gate or signal amplification. The sensor demonstrates the spike protein antigen detection in a concentration as low as 1 ag/mL. The heterostructure of the SARS-CoV-2 antibody/graphene-based sensor is developed through a simple and low-cost fabrication technique. Furthermore, sensors integrated into a portable testing unit distinguished B.1.1.7 variant positive samples from infected patients (mid-turbinate swabs and saliva samples, 4000-8000 copies/mL) with a response time of as fast as 0.6 s. The sensor is reusable, allowing for reimmobilization of the crosslinker and antibodies on the biosensor after desorption of biomarkers by NaCl solution or heat treatment above 40 °C.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , Humanos , SARS-CoV-2
4.
Nanoscale ; 10(1): 319-327, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29214263

RESUMEN

Tin(ii) monosulfide (SnS) is a layered, anisotropic material that is of interest as a two-dimensional semiconductor for opto-electronic, thermoelectric, and piezoelectric applications. In this study, the effect of work function on contact behavior was investigated. Ni/Au, Pd/Au, Cr/Au, and Ti/Au contacts were fabricated onto individual, solution-synthesized, p-type SnS nanoribbons. The lower work function metals (Cr and Ti) formed Schottky contacts, whereas the higher work function metals (Ni and Pd) formed ohmic or semi-ohmic contacts. Of the ohmic contacts, Ni was found to have a lower contact resistance (∼10-4 Ω cm2 or lower) than Pd (∼10-3 Ω cm2 or lower). Both the calculated Schottky barriers (0.39 and 0.50 eV) for Cr and Ti, respectively, and the ohmic behavior for Ni and Pd agree with behavior predicted by Schottky-Mott theory. The results indicate that high work function metals should be considered to form low resistance contacts to SnS multilayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...